首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the photometric observation of a polychromatic laser guide star (PLGS) using the AVLIS laser at the Lawrence Livermore National Laboratory (LLNL). The process aims at providing a measurement of the tilt of the incoming wave front at a telescope induced by atmospheric turbulence. It relies on the two-photon coherent excitation of the 4D5/2 energy level of sodium atoms in the mesosphere. We used two laser beams at 589 and 569 nm, with a maximum total average output power of approximately 350 W. For the purpose of photometric calibration, a natural star was observed simultaneously through the same instrument as the PLGS at the focus of the LLNL 50-cm telescope. Photometric measurements of the 330-nm return flux confirm our previous theoretical studies that the PLGS process should allow us at a later stage to correct for the tilt at wavelengths as short as approximately 1 microm at good astronomical sites. They show also that, at saturation of two-photon coherent absorption in the mesosphere, the backscattered flux increases by a factor of approximately 2 when the pulse repetition rate decreases by a factor of 3 at constant average power. This unexpected behavior is briefly discussed.  相似文献   

2.
One challenge for polychromatic laser guide stars is to create a sufficiently intense source in the UV. The flux required for the measurement of differential tip-tilt is the main issue that we address. We describe a model that has been validated using on-sky data. We present a method that excites the 4P3/2 sodium level using a one-photon excitation at 330 nm. It is more efficient than the two-photon excitation previously suggested since its power slope flux is 3 x 10(4) photons/s/m2/W instead of 1.3 x 10(3) photons/s/m2/W. This method is very promising both in terms of flux and system simplicity.  相似文献   

3.
We have improved a highly coherent x-ray laser at 13.9 nm using an oscillator-amplifier configuration. To improve a high-brilliance x-ray laser, we adopted traveling wave pumping for the amplifier target and rotated the amplifier target 3-4 mrad in the counterclockwise direction. Thereby, a seed x-ray laser can be amplified by medium plasma of the amplifier target with a high gain coefficient. The amplified x-ray laser has the output energy of approximately 1.3 microJ, corresponding to a large photon flux of 6.5 x 10(10) photons/pulse and a high peak brilliance of 5 x 10(26) photons/(s x mm(2) x mrad(2) x 0.01% bandwidth).  相似文献   

4.
We propose ground-layer adaptive optics (GLAO) to improve the seeing on the 42?m European Extremely Large Telescope. Shack-Hartmann wavefront sensors (WFSs) with laser guide stars (LGSs) will experience significant spot elongation due to off-axis observation. This spot elongation influences the design of the laser launch location, laser power, WFS detector, and centroiding algorithm for LGS GLAO on an extremely large telescope. We show, using end-to-end numerical simulations, that with a noise-weighted matrix-vector-multiply reconstructor, the performance in terms of 50% ensquared energy (EE) of the side and central launch of the lasers is equivalent, the matched filter and weighted center of gravity centroiding algorithms are the most promising, and approximately 10×10 undersampled pixels are optimal. Significant improvement in the 50% EE can be observed with a few tens of photons/subaperture/frame, and no significant gain is seen by adding more than 200 photons/subaperture/frame. The LGS GLAO is not particularly sensitive to the sodium profile present in the mesosphere nor to a short-timescale (less than 100?s) evolution of the sodium profile. The performance of LGS GLAO is, however, sensitive to the atmospheric turbulence profile.  相似文献   

5.
To support refinement of the ANSI Maximum Permissible Exposure safety limits, a series of experiments were conducted in vivo on Dutch Belted rabbit corneas to determine corneal minimum visible lesion thresholds for 2.0 microm continuous-wave laser irradiation. Single pulse radiant exposures were made at specified pulse durations of 0.1, 0.25, 0.5, 1.0, 2.0, and 4.0 s for spot 1/e(2) diameters of 1.17 mm and 4.02 mm. Threshold lesions were defined as the presence of a superficial surface whitening one hour after irradiation. Temperature measurements indicated that threshold peak temperatures were dependent on spot size and exposure duration. The exposure duration dependence of threshold average radiant exposure was described by an empirical power law equation: threshold radiant exposure[J/cm(2)]=a x exposure duration[s](b).  相似文献   

6.
本文提出采用高浓度掺铒光纤的短腔环形光纤激光器,研制出铋铝共掺和铋镓铝共掺两种石英基高浓度掺铒光纤,这两种掺铒光纤的吸收系数在1530 nm处分别达到了66.3dB/m和59.5dB/m.利用这两种石英基高浓度掺铒光纤,采用环形结构制作出了短腔的光纤激光器,光纤激光器中铒光纤长度分别仅为30 cm和90 cm.对采用这两种高浓度掺铒光纤制作的光纤激光器的输出特性进行了测试和分析.实验结果表明,采用铋镓铝共掺的掺铒光纤制作的光纤激光器具有更高的输出功率和斜率效率,在980 nm泵浦源输出功率330 mW时可以实现15 dBm的激光输出,激光器的斜率效率达到了22%.  相似文献   

7.
Abstract

A small‐hole blockage detection module using a 655 nm wavelength laser is developed to improve production yield and to guarantee the ferrule assembly's quality. This module includes a spot size contractor, a laser emitter/receiver unit, and a ‘roller gear cam index’ based automatic machine. The optical path blockage within a ferrule entry or ferrule hole is totally determined by the amount of laser power detected by the receiver unit. Experimental work was carried out based on both clean and defective ferrule assemblies. The four‐position average method provides a reliable detection algorithm in the experiment. The theoretical derivation of the laser beam contraction and experimental set up of the detection process are presented in this study.  相似文献   

8.
A series of field tests exposing mannequins clothed with civilian clothing to a 3m x 3m square liquefied natural gas (LNG) pool fire was conducted. Both single layer clothing and double layer clothing were used. The radiant heat flux incident outside the clothing and incident on the skin covered by clothing were measured using wide-angle radiometers, for durations of 100-200 s (per test). The levels of heat flux incident on the clothing were close to 5 kW/m(2). The magnitude of the radiant heat attenuation factor (AF) across the thickness was determined. AF varies between 2 and higher for cotton and polyester clothing (thickness 0.286-1.347 mm); AF value of 6 was measured for 1.347 mm thickness. Single sheet newspaper held about 5 cm in front of mannequins and exposed to incident flux of 5 kW/m(2) resulted in AF of 5, and AF of 8 with double sheets. AF decreases linearly with increasing heat flux values and linearly increases with thickness. The author exposed himself, in normal civilian clothing (of full sleeve cotton/polyester shirt and jean pants), to radiant heat from a LNG fire. The exposure was for several tens of seconds to heat flux levels ranging from 3.5 kW/m(2) to 5(+) kW/m(2) (exposure times from 25s to 97 s at average heat flux values in the 4 kW/m(2) and 5 kW/m(2)range). Occasionally, he was exposed to (as high as) 7 kW/m(2) for durations of several seconds. He did not suffer any unbearable or even severe pain nor did he experience blisters or burns or any other injury on the unprotected skin of his body. The incident heat fluxes on the author were measured by a hand-held radiometer (with digital display) as well as by strapped on wide-angle radiometers connected to a computer. He could withstand the US regulatory criterion of 5 kW/m(2) (for 30 s) without suffering any damage or burns. Temperature measured on author's skin covered by clothing did not rise above the normal body temperature even after 200 s of exposure to 4 kW/m(2) average heat flux.  相似文献   

9.
We have fabricated Er doped germanium nanowires of different diameters by pulsed laser deposition and chemical methods. Er induced photoluminescence emission due to the intra-4f (4)I(13/2)→(4)I(15/2) transition of Er energy levels at 1.53 μm has been achieved at room temperature using both resonant (980 nm) and non-resonant (325 nm) excitation of Er ions. The observed 1.53 μm photoluminescence signal upon non-resonant 325 nm excitation is attributed to the Ge related oxygen deficiency centers surrounding the Ge core. For direct excitation, the infrared photoluminescence characteristics have been studied as a function of Er concentration, photon flux, and diameter of the nanowires. The Er related emission signal is found to be enhanced with increase in Er concentration, pump flux of 980 nm, and the nanowire diameter. The time resolved characteristics of the Er induced emission peak have been studied as a function of the pump flux as well as the diameter of the Ge nanowires.  相似文献   

10.
Plasma chemical technology is experimentally applied to the fabrication of a Bi-activated alumosilicate-core pure-silica-cladding fiber preform. To the best of our knowledge, this is the first time this technology has been applied in this way. We measure gain efficiency at pumping by a 1058 nm wavelength Yb fiber laser in a piece of a newly obtained fiber 20 m in length within 100-1200 nm wavelengths band. The gain efficiency reaches as high as 0.2 dB/mW. Bi-activated alumosilicate-core pure-silica-cladding fiber that is not more than 12 m in length serves a basis for a 1 W output power fiber laser emitting at the wavelength of 1160 nm with 8% slope efficiency. We also measure the photoluminescence spectrum and kinetics of Bi centers responsible for laser emission under the excitation of 193 nm wavelength ArF laser pulses.  相似文献   

11.
Observations of sodium density variability in the upper mesosphere/lower thermosphere, obtained using a high-resolution lidar system, show rapid fluctuations in the sodium centroid altitude. The temporal power spectrum extends above 1 Hz and is well-fit by a power law having a slope that is -1.95±0.12. These fluctuations produce focus errors in adaptive optics systems employing continuous-wave sodium laser guide stars, which can be significant for large-aperture telescopes. For a 30 m aperture diameter, the associated rms wavefront error is approximately 4 nm per meter of altitude change and increases as the square of the aperture diameter. The vertical velocity of the sodium centroid altitude is found to be ~23 ms(-1) on a 1 s time scale. If these high-frequency fluctuations arise primarily from advection of horizontal structure by the mesospheric wind, our data imply that variations in the sodium centroid altitude on the order of tens of meters occur over the horizontal scales spanned by proposed laser guide star asterisms. This leads to substantial differential focus errors (~107 nm over a 1 arc min separation with a 30 m aperture diameter) that may impact the performance of wide-field adaptive optics systems. Short-lasting and narrow sodium density enhancements, more than 1 order of magnitude above the local sodium density, occur due to advection of meteor trails. These have the ability to change the sodium centroid altitude by as much as 1 km in less than 1 s, which could result in temporary disruption of adaptive optics systems.  相似文献   

12.
He JL  Lee CK  Huang JY  Wang SC  Pan CL  Huang KF 《Applied optics》2003,42(27):5496-5499
We report a first demonstration, to our knowledge, of a cw passively mode-locked Nd:GdVO4 laser (k = 1063 nm). A relaxed saturable Bragg reflector was used. The laser generates pulses of 9.2 ps at a repetition rate of 119 MHz. As much as 5.4 W of average power was realized with a slope efficiency of 25.7%.  相似文献   

13.
A gas cell filed with argon gas under pressure is placed in a tightly focused laser beam to provide a limiter for laser pulses above a certain peak power, corresponding to the optical breakdown threshold for the creation of a laser-induced plasma. Measurements of the threshold intensity as a function of argon gas pressure are given for a laser wavelength of 1.064 microm (Nd:YAG) and a pulse length of 6.4 ns. Threshold intensities for optical breakdown in fused silica were measured with the same optical system, enabling a relative comparison of breakdown thresholds, of interest for protecting fused-silica optical components in fiber-optic delivery systems for laser material processing applications. The threshold intensity was measured to 220 GW/cm2 in Ar at 1.0 x 10(5) N/m2 (1 atm), 80 GW/cm2 in Ar at 8.0 x 10(5) N/m2 (7.9 atm), and 55 GW/cm2 in fused silica. Even though the threshold in argon is higher than that in fused silica, the limiter will protect the optical components if the laser beam is focused to a tighter spot in the gas cell than at the input end of the fiber.  相似文献   

14.
Abstract

A single-beam gradient optical trap was constructed using a 20 mW 632·8 nm He–Ne laser coupled to an optical microscope. Latex spheres were trapped in water at the focal point of a tightly-focused laser beam, which was generated using a 100 × objective. The efficiency of the trap was evaluated by determining the maximum speeds at which the trapped particles could be manipulated. Typical maximum speeds of tens of microns per second were recorded, at the maximum trapping power of 6·7 mW. The effective transverse trapping range for 1–7 μm diameter latex spheres was measured to be 1–3 μm, and the maximum transverse optical force on 1–12 μm diameter latex spheres varied in the range 0·4–4·5 pN.  相似文献   

15.
Coherent acoustic phonons are generated at terahertz frequencies when semiconductor quantum-well nanostructures are illuminated by femtosecond laser pulses. These phonons-also known as nanoacoustic waves-typically have wavelengths of tens of nanometres, which could prove useful in applications such as non-invasive ultrasonic imaging and sound amplification by the stimulated emission of radiation. However, optical diffraction effects mean that the nanoacoustic waves are produced with spot sizes on the micrometre scale. Near-field optical techniques can produce waves with smaller spot sizes, but they only work near surfaces. Here, we show that a far-field optical technique--which suffers no such restrictions--can be used to spatially manipulate the phonon generation process so that nanoacoustic waves are emitted with lateral dimensions that are much smaller than the laser wavelength. We demonstrate that nanoacoustic waves with wavelengths and spot sizes of the order of 10 nm and 100 nm, respectively, can be generated and detected.  相似文献   

16.
We demonstrate superresolution fluorescence imaging of cells using bioconjugated CdSe/ZnS quantum dot markers. Fluorescence blueing of quantum dot cores facilitates separation of blinking markers residing closer than the diffraction barrier. The high number of successively emitted photons enables ground state depletion microscopy followed by individual marker return with a resolving power of the size of a single dot (~12 nm). Nanoscale imaging is feasible with a simple webcam.  相似文献   

17.
黄忆龙 《工程爆破》1998,4(4):24-27
随着激光技术的发展,激光引爆成为炸药起爆的新方式。激光的能量呈高斯分布,激光的能流密度在不同的照射深度呈指数形式衰减。本文通过理论推导获得了激光能量在炸药体内的分布曲面方程,实验获得的爆坑形状验证了这一结果;爆坑的出现进一步说明热点成长为爆轰是分阶段进行的。炸药的颜色对爆坑形状参数的影响在一定程度上证明自由振荡式激光对炸药的引爆属于热起爆。通过对热穿透方程的分析可知炸药的激光引爆存在一个最佳能流密度,并用实验进行了验证。  相似文献   

18.
Lassila E  Hernberg R 《Applied optics》2006,45(15):3548-3552
A simplified multiwavelength prototype of an axially symmetric diode laser device based on stacks made of single emitters has been made, and the performance of the device has been demonstrated experimentally. The results verify that kilowatt-level light power can be focused into a circular spot with a 1/e2 diameter of 360 microm, a focal length of 100 mm, and a numerical aperture of 0.24, thus producing an average power density in excess of 10 kW/mm2 and a brightness of 6x10(10) W m-2 sr-1. The experiments also predict that it will be possible to increase these values to more than 60 kW/mm2 and 3x10(11) W m-2 sr-1.  相似文献   

19.
CO2 laser annealing induced effects of dehydrogenation, Si nanocrystal precipitation, ablation, and optical refinement in PECVD grown SiO1.25 film are investigated. Dehydrogenation shrinks SiO1.25 thickness by 40 nm after annealing at laser intensity (Plaser) of 4 kW/cm(2) for 1.4 ms. As Plaser increases to 6 kW/cm(2), the photoluminescence (PL) red-shifts to 806 nm due to the size enlargement of Si nanocrystals, while a reduced optical bandgap energy from 3.3 to 2.43 eV and an enlarged refractive index from 1.57 to 1.87 are also observed. Transmission electron microscopy analysis reveals that the randomly oriented Si nanocrystals exhibit an average diameter of 5.3 nm and a volume density of 1.9 x 10(18) cm(-3). CO2 Laser ablation initiates at intensity higher than 7 kW/cm(2), which introduces numerous structural defects with a strong PL at 410 nm. Such an ablation inevitably leads to a blue-shifted optical bandgap energy from 2.43 to 2.76 eV as Plaser enlarges from 6 to 12 kW/cm(2) are concluded.  相似文献   

20.
Synthetic ferrimagnetic media: effects of thermally assisted writing   总被引:1,自引:0,他引:1  
Thermally assisted writing on high-coercivity synthetic ferrimagnetic media (SFM) was demonstrated using a conventional spin stand equipped with an optical head for commercial magnetooptical drives. The laser light (/spl lambda/ = 685 nm) was focused through a glass substrate onto a recording layer. The optical spot size was 1.1 /spl mu/m and a commercial magnetic head had a writer width of /spl sim/0.25 /spl mu/m. The recording properties were measured as a function of the writing current (I/sub w/) and the laser power (P/sub w/). For the thermally stable medium with H/sub c/ = 6 kOe, a laser irradiation with an optimum power significantly improved the overwrite performance and the signal-to-noise ratio (SNR) values. The SNR values were improved by optimizing P/sub w/ over a wide writing current range. The improvements with the assist were found in both the signal and the noise. The media with a large dynamic coercivity value or with thick magnetic layers clearly showed the advantages with thermal assist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号