首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The neuroleptic-like effects of neurotensin (NT) are thought to be due to interactions with dopamine (DA) acting primarily at D2 receptors within the nucleus accumbens septi (Acb). Using electron microscopic dual labeling immunocytochemistry, we sought to demonstrate cellular substrates for functional interactions involving NT and DA D2 receptors in the adult rat Acb. Peroxidase reaction product representing D2 receptor-like immunoreactivity (D2-LI) was seen along membranes of Golgi lamellae and multivesicular bodies of perikarya containing immunogold labeling representing NT-LI. Dually labeled somata usually contained highly indented nuclei, a characteristic of aspiny neurons. Dendrites also occasionally colocalized the two immunomarkers. Other somata, dendrites, and all axon terminals were singly labeled with either NT-LI or D2-LI. In distinct sets of terminals, NT-LI was commonly associated with large, dense-cored vesicles, whereas D2-LI was found along the plasmalemma and over nearby small clear vesicles. Each type of terminal comprised approximately 20% of synaptic input to NT-immunoreactive dendrites. Similar proportions of terminals containing NT-LI or D2-LI contacted unlabeled (approximately 55%) or NT-labeled (approximately 35%) dendrites and, occasionally, were observed converging onto common dendrites. Terminals containing NT-LI or D2-LI also were often closely apposed. These findings provide the first ultrastructural evidence that: (1) NT and D2 receptors are colocalized in aspiny neurons and dendrites, (2) NT may produce a direct postsynaptic effect on neurons receiving input from terminals which are presynaptically modulated by DA via D2 receptors, and (3) NT and DA acting at D2 receptors may interact through presynaptic modulation of common axon terminals.  相似文献   

2.
Neuropeptide Y (NPY) is present in aspiny neurons in the nucleus accumbens (NAc), which also contains moderate levels of ligand binding and mRNA for the Y1 receptor. To determine the potential functional sites for receptor activation, we examined the electron microscopic immunocytochemical localization of antipeptide antisera against the Y1 receptor in the rat NAc. We also combined immunogold and immunoperoxidase labeling to show that, in this region, Y1 receptors are present in certain somatodendritic and axonal profiles that contain NPY or that appose NPY containing neurons. The Y1-like immunoreactivity (Y1-LI) was seen occasionally along plasma membranes but was associated more commonly with smooth endoplasmic reticulum (SER) and tubulovesicular organelles in somata and dendrites of spiny and aspiny neurons. The mean density of immunoreactive dendrites and spines per unit volume was greater in the "motor-associated" core than in the shell of the NAc. Y1-LI was also seen in morphologically heterogenous axon terminals, including those forming asymmetric excitatory-type synapses, and in selective astrocytic processes near this type of junction. We conclude that Y1 receptors play a role in autoregulation of NPY-containing neurons but are also likely to be internalized along with endogenous NPY in NAc. Our results also implicate Y1 receptors in the NAc in post- and presynaptic effects of NPY and in glial functions involving excitatory neurotransmission. In addition, they suggest involvement of Y1 receptors in determining the output of a select population of neurons associated with motor control in the NAc core.  相似文献   

3.
Physiological and anatomical studies have suggested that the endogenous opioid peptide, methionine-enkephalin (ENK), may directly modulate noradrenergic neurons. Additionally, chronic opiate administration has been shown to increase the levels of a number of G-proteins and phosphoproteins including the catecholamine synthesizing enzyme, tyrosine hydroxylase (TH). We combined immunogold-silver localization of tyrosine hydroxylase and immunoperoxidase labeling for ENK in single sections through the nucleus locus coeruleus (LC) in the rostral pons to determine potential substrates for the divergent actions of this opioid peptide. Light microscopic analysis of ENK immunoreactivity in the LC area indicated that ENK fibers are dense and highly varicose. In coronal sections, ENK-immunoreactive processes were punctate and appeared to envelop LC-cell bodies. More rostrally, in the region of catecholamine-immunoreactive extranuclear dendrites, ENK-immunoreactive varicose processes were interdigitated with TH-labeled processes. Electron microscopy of this rostral region revealed that ENK-immunoreactive axon terminals contained small clear as well as large dense core vesicles. The large dense core vesicles (1-10/terminal) were consistently the most immunoreactive and were identified toward the periphery of the axon terminal distal to the active zone of the synapse. Unlabeled axon terminals and glial processes were the most commonly observed elements located adjacent to the plasmalemma of axons containing the labeled dense core vesicles. Axon terminals containing ENK immunoreactivity varied in size (0.3 micron to 2.0 microns) as well as formation of synaptic specializations (i.e., asymmetric versus symmetric). The ENK-labeled terminals formed synapses with dendrites with and without detectable TH immunoreactivity. These results provide the first direct ultrastructural evidence that morphologically heterogeneous terminals containing ENK immunoreactivity form synapses with catecholamine dendrites within the LC. The formation of asymmetric and symmetric synaptic specializations suggests that the opioid peptide, ENK, may be colocalized with other neurotransmitters. Furthermore, the distribution of ENK immunoreactivity in axon terminals apposed to other unlabeled afferents or astrocytic processes suggests that actions of ENK may also include presynaptic modulation of other transmitters and/or effects on astrocytes.  相似文献   

4.
Many motor effects of opiates acting at mu-opioid receptors are thought to reflect functional interactions with dopaminergic inputs to the caudate-putamen nucleus. We examined the cellular and subcellular bases for this interaction in the rat caudate-putamen nucleus by dual immunocytochemical labelling for mu-opioid receptors and tyrosine hydroxylase, a marker mainly for dopamine in this region. mu-Opioid receptor-like immunoreactivity showed a patchy distribution by light microscopy. Within the patches, electron microscopy revealed that immunogold labelling for mu-opioid receptors was mainly distributed along extrasynaptic plasma membranes of medium spiny neurons. In contrast, immunoperoxidase labelling for tyrosine hydroxylase was exclusively located in axons and axon terminals without detectable mu-opioid receptor-like immunoreactivity. Forty-six percent of the total mu-opioid receptor-labelled neuronal profiles (n = 1441) were in contact with tyrosine hydroxylase-immunoreactive axons and terminals. These contacts were characterized by closely apposed parallel plasma membrane segments, without well-defined synaptic junctions, or with punctate symmetric specializations. From 639 noted appositions, over 90% were between mu-opioid receptor-labelled dendrites and/or dendritic spines and tyrosine hydroxylase-containing terminals. The dendritic spines containing mu-opioid receptor-like immunoreactivity often received asymmetric synapses characteristics of excitatory inputs from unlabelled terminals. Axon terminals containing mu-opioid receptor-like immunoreactivity formed asymmetric synapses with dendritic spines, or apposed tyrosine hydroxylase-labelled terminals. Our results suggest that, in striatal patch compartments, mu-agonists and dopamine dually modulate the activity of single spiny neurons mainly through changes in their postsynaptic responses to excitatory inputs. In addition, our findings implicate mu-opioid receptors and dopamine in the presynaptic regulation of excitatory neurotransmitter release within the striatal patch compartments.  相似文献   

5.
The present study was undertaken in order to determine whether unilateral 6-hydroxydopamine (6-OHDA) lesions in the nucleus accumbens (Acb) affect basal Fos-like immunoreactivity (-LI) in terminal regions of the mesotelencephalic dopamine system. It was hypothesized that dopamine depletion in the Acb would alter activation of mesotelencephalic dopamine neurons perhaps via the striatomesencephalic GABAergic pathway, and that this may be detected as altered basal Fos-LI in mesotelencephalic terminal regions. 6-OHDA treatment effectively depleted tyrosine hydroxylase (TH)-LI in well-circumscribed areas of the Acb at 14 days post-lesion, but at 25 days post-lesion all animals showed a reappearance of TH-LI staining in the lesioned region. When data from a number of mesotelencephalic terminals regions was pooled. Fos-LI cell density was higher in the sham and lesion 14-day groups and sham 25-day group than both the 25-day lesion group and untreated controls. The present study demonstrates that unilateral sham and 6-OHDA lesions in the Acb may have repercussions throughout the mesotelencephalic dopamine system. Further investigation is necessary to determine whether reappearance of TH-LI at the lesion site contributes to the return of Fos-LI to basal levels.  相似文献   

6.
The ability of dopamine to regulate the cognitive functions of the prefrontal cortex (PFC) involves complex modulatory actions on GABA-containing local circuit neurons in addition to pyramidal cells. However, the subclasses of cortical neurons that receive direct dopamine input are not known. We sought to determine whether dopamine terminals innervate the subclasses of local circuit neurons that contain the calcium-binding protein parvalbumin (PV), namely the wide arbor and chandelier neurons that target pyramidal cell soma and axon initial segments respectively. Sections through area 9 of five monkeys were labeled with immunoperoxidase for tyrosine hydroxylase (TH), to identify dopamine terminals, and with immunogold-silver for PV. Electron microscopic examination of the middle cortical layers (IIIb-IV) revealed that TH-positive terminals were sometimes directly apposed to PV-labeled dendrites, and approximately one-third of these contacts exhibited morphological features that are typically associated with symmetric synapses. In contrast, TH-immunolabeled terminals in the superficial layers (I-IIIa) were less frequently apposed to PV-positive dendrites, and none of these contacts exhibited synapse-like morphology. These findings, in concert with previous studies of GABA- or calretinin-containing local circuit neurons, suggest that dopamine's modulatory action in the PFC involves selective effects on only certain interneuron populations, including those that mediate potent inhibitory actions on pyramidal cells.  相似文献   

7.
The delta opioid receptor (DOR) and mu opioid receptor (MOR) are abundantly distributed in the dorsal horn of the spinal cord. Simultaneous activation of each receptor by selective opiate agonists has been shown to result in synergistic analgesic effects. To determine the cellular basis for these functional associations, we examined the electron microscopic immunocytochemical localization of DOR and MOR in single sections through the superficial layers of the dorsal horn in the adult rat spinal cord (C2-C4). From a total of 270 DOR-labeled profiles, 49% were soma and dendrites, 46% were axon terminals and small unmyelinated axons, and 5% were glial processes. 6% of the DOR-labeled soma and dendrites, and < 1% of the glial processes also showed MOR-like immunoreactivity (MOR-LI). Of 339 MOR-labeled profiles, 87% were axon terminals and small unmyelinated axons, 12% were soma and dendrites, and 2% were glial processes. 21% of the MOR-labeled soma and dendrites, but none of the axon terminals also contain DOR-LI. The subcellular distributions of MOR and DOR were distinct in axon terminals. In axon terminals, both DOR-LI and MOR-LI were detected along the plasmalemma, but only DOR-LI was associated with large dense core vesicles. DOR-labeled terminals formed synapses with dendrites containing MOR and conversely, MOR-labeled terminals formed synapses with DOR-labeled dendrites. These results suggest that the synergistic actions of selective MOR- and DOR-agonists may be attributed to dual modulation of the same or synaptically linked neurons in the superficial layers of the spinal cord.  相似文献   

8.
The shell compartment of the nucleus accumbens (AcbSh) is prominently involved in the rewarding aspects of delta-opioid receptor (DOR) agonists, including one of its putative endogenous ligands, Met5-enkephalin (Enk). We examined the ultrastructural immunocytochemical localization of an antipeptide DOR antiserum and an antibody against Enk to determine the major cellular sites for DOR activation and the spatial relationship between DOR and Enk in this region. Sixty percent of DOR-immunoreactive profiles were axon terminals and small unmyelinated axons, whereas the remainder were mainly dendrites and dendritic spines. In axons and terminals, DOR labeling was distributed along plasma and vesicular membranes. DOR-containing terminals were mainly large and primarily formed symmetric synapses or occasionally asymmetric synapses. DOR immunoreactivity also was associated with terminals that were small and formed punctate symmetric or nonrecognizable synapses. Dual immunoperoxidase and immunogold labeling showed that 35% of DOR-labeled axons apposed other terminals that contained Enk. In addition, 25% of the DOR-labeled terminals contained Enk. Thirty-five percent of DOR labeling was observed within dendrites and dendritic spines. DOR-labeled spines showed intense immunoreactivity within asymmetric postsynaptic junctions, which were formed by terminals that lacked Enk immunoreactivity. DOR-labeled spines, however, were apposed to Enk-containing terminals in 13% of all associations between dually labeled profiles. These results provide ultrastructural evidence that activation of DOR in the AcbSh is primarily involved in modulating the presynaptic release of mainly inhibitory, but also excitatory, neurotransmitters. These data also suggest that DOR plays a role in determining the postsynaptic response to excitatory afferents.  相似文献   

9.
Alpha-2-adrenergic receptor (alpha2-AR) agonists potently inhibit the activity of noradrenergic neurons of the locus coeruleus (LC), an effect that may be mediated by the A- and/ or C-subtypes of alpha2-AR (alpha2A- and alpha2C-AR). To gain insight into the functional significance of these alpha2-AR subtypes in the LC, we have examined their ultrastructural localization by using subtype-specific antibodies. We recently demonstrated that alpha2A-ARs are localized prominently in axon terminals and catecholaminergic dendrites in the LC. In the present study, we sought to identify the subcellular substrates underlying alpha2C-AR actions in the LC by analyzing the ultrastructural distribution of alpha2C-AR immunoreactivity (alpha2C-AR-IR) in sections that were dually labeled for the catecholamine-synthesizing enzyme tyrosine hydroxylase (TH). Alpha-2C-AR-IR was predominantly localized in dendrites, most of which also contained immunolabeling for TH. Within such dendrites, alpha2C-AR-IR was associated with the plasma membrane and occasionally Golgi cisternae and tubulovesicles. The vast majority of dendrites containing alpha2C-AR-IR received asymmetric (excitatory) contacts from unlabeled axon terminals that often contained dense core vesicles. Alpha-2C-AR-IR was observed in some unmyelinated axons and astrocytic processes that were apposed to TH-immunoreactive dendrites but was rarely associated with axon terminals. These results provide the first ultrastructural evidence that alpha2C-ARs (1) are localized postsynaptically in catecholaminergic neurons of the LC and (2) may be strategically situated to modulate the activation of LC neurons by excitatory inputs.  相似文献   

10.
This study describes the ultrastructural localization of nitric oxide synthase (NOS) immunoreactivity in the cat ventrobasal complex. NOS immunoreactivity was found in the cell bodies and dendrites of local circuit neurons and in vesicle-containing profiles. The vesicle-containing profiles could be divided into two classes, those of dendritic origin (presynaptic dendrite boutons) and those of axonal origin. The NOS labelled axon terminals varied in size and packing density and were principally located in the extra-glomerular neuropil. These boutons presented a range of morphologies and it was not possible to determine the probable source based on morphological criteria. The NOS immunoreactive presynaptic dendrite boutons were found both within and outside glomeruli and established both pre- and post-synaptic relationships with other elements. Post-embedding GABA immunocytochemistry showed that some NOS immunoreactive axonal boutons and presynaptic dendrites were also immunopositive for GABA. This finding suggests that some of the NOS labelled axonal boutons are of local circuit neuron origin. These results suggest that local circuit neurons in the cat ventrobasal complex might be involved in specific, short range interactions using GABA and longer, more global interactions using nitric oxide.  相似文献   

11.
An insulin-like immunoreactivity (ILIR) was localized in the neuronal somata, dendrites and myelinated axons in the gracile nucleus of the male Wistar rat. In the neuronal somata, the reaction product was dispersed in the cell nucleus and cytoplasm. In the cell nucleus, the reaction product was scattered throughout the nucleoplasm, but not within the nucleolus. In the cytoplasm, the reaction product was evenly distributed, mainly in the vicinity of the cisternae of the rough endoplasmic reticulum. In labelled dendrites, the reaction product was closely associated with the parallel arrays of neurotubules and postsynaptic densities. Most of these labelled dendrites were postsynaptic to unlabelled axon terminals. A labelled dendrite often formed the central element of a synaptic glomerulus with several unlabelled axon terminals. Numerous labelled myelinated axons were also present in the neuropil. However, axon terminals appeared to be unlabelled. It is hypothesized that insulin-like substance(s) may be modulating nuclear activities as well as neurotransmission at the synapse in the gracile nucleus.  相似文献   

12.
NMDA receptors play key roles in synaptic plasticity and neuronal development, and may be involved in learning, memory, and compensation following injury. A polyclonal antibody that recognizes four of seven splice variants of NMDAR1 was made using a C-terminus peptide (30 amino acid residues). NMDAR1 is the major NMDA receptor subunit, found in most or all NMDA receptor complexes. On immunoblots, this antibody labeled a single major band migrating at M(r) = 120,000. The antibody did not cross-react with extracts from transfected cells expressing other glutamate receptor subunits, nor did it label non-neuronal tissues. Immunostained vibratome sections of rat tissue showed labeling in many neurons in most structures in the brain, as well as in the cervical spinal cord, dorsal root and vestibular ganglia, and in pineal and pituitary glands. Staining was moderate to dense in the olfactory bulb, neocortex, striatum, some thalamic and hypothalamic nuclei, the colliculi, and many reticular, sensory, and motor neurons of the brainstem and spinal cord. The densest stained cells included the pyramidal and hilar neurons of the CA3 region of the hippocampus, Purkinje cells of the cerebellum, supraoptic and magnocellular paraventricular neurons of the hypothalamus, inferior olive, red nucleus, lateral reticular nucleus, peripheral dorsal cochlear nucleus, and motor nuclei of the lower brainstem and spinal cord. Ultrastructural localization of immunostaining was examined in the hippocampus, cerebral cortex, and cerebellar cortex. The major staining was in postsynaptic densities apposed by unstained presynaptic terminals with round or mainly round vesicles, and in associated dendrites. The pattern of staining matched that of previous in situ hybridization but differed somewhat from that of binding studies, implying that multiple types of NMDA receptors exist. Comparison with previous studies of localization of other glutamate receptor types revealed that NMDAR1 may colocalize with these other types in many neurons throughout the nervous system.  相似文献   

13.
Immunohistochemical-labeling for the neurochemicals gamma-aminobutyric acid (GABA) and enkephalin are abundant in the ventromedial nucleus of the hypothalamus (VMN). In VMN, both GABA and enkephalin may function to regulate feeding behavior, as well as other hormone-controlled behaviors. Importantly, in several brain areas, enkephalin is often thought to modulate GABAergic neurotransmission. Therefore, we used dual-labeling immunohistochemistry with electron microscopic analysis to study the circuitry of neurons containing GABA- and/or enkephalin-labeling within the VMN. Somato-dendritic profiles containing GABA-labeling were three fold more abundant than GABA-labeled axon terminals (117 soma or dendrites vs. 34 axons). In addition, axon terminals containing GABA-labeling sometimes synapsed onto GABA-labeled somata or dendrites (25% or 9/34). In contrast, under these conditions labeling for enkephalin was primarily restricted to axon terminals, which were very abundant throughout VMN. Enkephalin-containing terminals accounted for a large fraction (25% 23/92) of the axons in contact with GABA-labeled dendrites, although they also contacted unlabeled dendrites. These observations suggest that a population of VMN neurons are GABAergic. These may be either local circuit 'interneurons' or projection neurons. In addition, GABA-labeled VMN neurons may be regulated by either enkephalin or GABA. These morphologic observations provide the basis for disinhibitory mechanisms to function within the VMN.  相似文献   

14.
In the mammalian retina, neuronal nitric oxide synthase (NOS) is mainly localized in subpopulations of amacrine cells. One function of nitric oxide (NO) is to stimulate soluble guanylate cyclases which in turn synthesize cGMP. We used an antibody specific for cGMP to demonstrate cGMP-like immunoreactivity (cG-IR) in bovine, rat, and rabbit retinae and investigated the effects on cGMP levels of both exogenously applied NO and of endogenously released NO. We found that cGMP levels in inner and outer retina were controlled in opposite ways. In the presence of the NO-donors SNP, SIN-1 or SNAP, cG-IR was prominent in neurons of the inner retina, mainly in cone bipolar cells, some amacrine and ganglion cells. Retinae incubated in IBMX showed weak cG-IR in bipolar cells. Glutamate increased cG-IR in the inner retina, presumably by stimulating endogenous NO release, whereas NOS inhibitors or GABA and glycine decreased cG-IR in bipolar cells by reducing NO release. In somata, inner segments and spherules of rod photoreceptors the situation was reversed. cG-IR was undetectable in the presence of NO-donors or glutamate, was moderate in IBMX-treated retinae, but increased strongly in the presence of NOS inhibitors or GABA/glycine. We conclude that NO is released endogenously in the retina. In the presence of NO, cGMP levels are increased in neurons of the inner retina, but are decreased in rods.  相似文献   

15.
Interrelations of tyrosine-hydroxylase-immunoreactive afferent fibres with neuronal elements were studied in central, basal and intercalated nuclei of the rat amygdaloid complex. Comparison with dopamine-beta-hydroxylase-immunoreacted and phenylethanolamine-N-methyltransferase-immunoreacted parallel sections indicated that the tyrosine-hydroxylase immunoreaction labelled preferentially dopaminergic axons. At the electron-microscopic level, the majority of tyrosine-hydroxylase-immunoreactive axons possessed small boutons containing small clear vesicles and contacting dendrites, spines or somata of amygdala neurons, forming mostly symmetric synapses. They were often directly apposed to or in the vicinity of unlabelled terminals synapsing on the same structure. Synaptic density was highest in the central lateral part of the central nucleus. In the central and basal nuclei labelled axons synapsed preferentially on small dendrites and dendritic spines, and on somata of a few neurons. A detailed study of the neuronal ultrastructure showed that innervated somata possessed the differential characteristics displayed by the predominant neuron types in the medial and central lateral central nucleus and resembled the typical projection neurons in the basal nuclei. In the paracapsular intercalated cell groups the majority of neurons possessed intense perisomatic innervation by immunoreactive terminals. The results suggest that tyrosine-hydroxylase-immunoreactive, predominantly dopaminergic amygdaloid afferent fibres preferentially modulate the effect of extrinsic inputs into neurons of the central and basal nuclei, while a nonselective regulation is exerted upon the output of paracapsular intercalated neurons. It is suggested that this innervation pattern may be important for the coordinated integration of extrinsic and intraamygdaloid connections and thus for balanced output of the structure.  相似文献   

16.
17.
A quantitative analysis of substance P (SP)-immunoreactive (IR) terminals contacting physiologically characterized dorsal horn neurons was performed. Three types of neuron were studied: nociceptive specific (NS) from lamina I (n = 3), wide dynamic range (WDR) from laminae II-IV (n = 3), and nonnociceptive (NN) from lamina IV (n = 3). The nociceptive response of focus was a slow, prolonged depolarization to noxious stimuli, because this response was previously shown to be blocked by selective neurokinin-1 (NK-1) receptor antagonists. Ultrastructural immunocytochemistry was used to quantify the relative number of SP-IR boutons apposed to the intracellularly labeled cell per unit of length (density). Densities of the total population (SP immunoreactive+nonimmunoreactive) of apposed boutons were similar in all three regions (cell body, proximal and distal dendrites) for the three functional types of neuron. NS neurons received a significantly higher density of appositions from SP-IR boutons than NN cells in all three regions. However, compared to WDR cells, NS cells possessed a significantly higher density of appositions from SP-IR boutons only in the cell body and proximal dendrites. WDR cells had a higher density of appositions from SP-IR boutons than NN cells, but only in the proximal and distal dendrites. On average, 33.5% of the SP-IR boutons apposed to the cells displayed a synaptic contact. Finally, 30-45% of the SP-IR boutons apposed to the cells colocalized calcitonin gene-related protein (CGRP) immunoreactivity, indicating their primary sensory origin. The data indicate a direct correlation between the amount of SP-IR input and the nociceptive nature of the cells and suggest that SP acts on NK-1 receptors at a short distance from its release site.  相似文献   

18.
The ultrastructure and synaptic relations of neurotensinergic neurons in the rat dorsal raphe nucleus (DRN) were examined. The neurotensin-like immunoreactive (NT-L1) neurons in the DRN were fusiform or spherical. The NT-LI perikarya could only be detected in colchicine-treated animals whereas the immunoreactive axon terminals could only be found in the animals not treated with colchicine. Although many NT-LI dendrites received synapses from nonimmunoreactive axon terminals, the NT-LI perikarya received few synapses. NT-LI axon terminals also made synapses on nonimmunoreactive dendrites. Occasionally, synapses were found between the NT-LI axon terminals and NT-LI dendrites in the cases in which the animals were not treated with colchicine.  相似文献   

19.
Basic fibroblast growth factor (bFGF) significantly enhances the short-term survival of embryonic striatal neurons in vitro but has little effect on the outgrowth of striatal cells compared to neurons from other brain regions. Studies in our laboratory have shown that bFGF protects postnatal striatal cells in vitro from NMDA receptor-induced neurotoxicity. We therefore examined the effects of bFGF on the outgrowth of GABA-containing cells taken from the postnatal (Day 1) caudate-putamen and cultured for up to 3 weeks. In control cultures GABAergic neurons formed three populations based on somatic size and developed the cytoarchitectural features characteristic of dendrites, spines, and axons. In the presence of bFGF (6 pM continuously from the day of plating), small- and medium-sized GABAergic neurons showed significant increases compared to untreated controls in axon-like growth (axon length) at 6 days in culture and in both axon- and dendrite-like neurite growth (axon length and branch order, number of primary dendrites, dendrite length, and dendritic branch order) at 13 and 17 days in culture. Large GABAergic neurons were unaffected by treatment with bFGF. Striatal GABAergic neurons exposed to nerve growth factor (10 ng/ml) were not different from untreated controls. Neuron survival was also unaffected by bFGF treatment at all days in culture examined. Other observations suggested that the neurotrophic effects of bFGF were mediated by a direct action of the growth factor on striatal neurons and not glial cells. First, glial cells (identified by the immunohistochemical localization of glial fibrillary acidic protein) were unaffected by bFGF treatment at the low concentration (6 pM) used to enhance neurite growth, but did significantly proliferate at higher concentrations of bFGF (6 nM). Second, immunoreactive bFGF receptor protein was localized predominantly to the somata and processes of striatal neurons and not to glial cells in the cultures. Finally, when neurons from control cultures were briefly exposed (1 to 4 h) to bFGF at concentrations which were neurotrophic, a marked elevation in the immediate early gene protein c-fos was observed by immunohistochemistry in the nuclei of neurons, including GABAergic cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号