首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The focus of this work is L1-optimal control of sampled-data systems. A converging approximation procedure is derived to compute the L-induced norm of closed-loop finite-dimensional linear time-invariant (LTI) sampled-data systems. An approximation method is developed to synthesize L1-optimal sampled-data regulators. Finally, an example is provided that illustrates the L1 analysis and design techniques presented  相似文献   

2.
Robust disturbance rejection bounds obtained recently by Zhu et al. are tight with respect to the disturbance set that has a specified L2 norm bound. It is shown that the bounds are also tight with respect to a weighted L2 disturbance set that has a specified bound on its outer product by choosing a special weight matrix in the L2 norm. The matrix can computed by numerical iteration  相似文献   

3.
The L1 optimal control problem with rational controllers for continuous-time systems is considered in which it is shown that the optimal L1 performance index with rational controllers is equal to that of irrational controllers. A sequence of rational controllers that approximates the optimal index is constructed. Convergence properties of such a sequence are studied. That the corresponding sequence of objective transfer functions is shown to converge in weak-* topology in BV(R+) in the time domain and uniformly in a wider sense in the frequency domain  相似文献   

4.
The worst-case effect of a disturbance system on the H 2 norm of the system is analyzed. An explicit expression is given for the worst-case H2 norm when the disturbance system is allowed to vary over all nonlinear, time-varying and possibly noncausal systems with bounded L2-induced operator norm. An upper bound for this measure, which is equal to the worst-case H2 norm if the exogeneous input is scalar, is defined. Some further analysis of this upper bound is done, and a method to design controllers which minimize this upper bound over all robustly stabilizing controllers is given. The latter is done by relating this upper bound to a parameterized version of the auxiliary cost function studied in the literature  相似文献   

5.
It is shown that H optimization is equivalent to weighted H2 optimization in the sense that the solution of the latter problem also solves the former. The weighting rational matrix that achieves this equivalence is explicitly computed in terms of a state-space realization. The authors do not suggest transforming H optimization problems to H2 optimization problems as a computational approach. Rather, their results reveal an interesting connection between H and H2 optimization problems which is expected to offer additional insight. For example, H2 optimal controllers are known to have an optimal observer-full state feedback structure. The result obtained shows that the minimum entropy solution of H optimal control problems can be obtained as an H2 optimal solution. Therefore, it can be expected that the corresponding H optimal controller has an optimal observer-full state feedback structure  相似文献   

6.
A method is presented for the decomposition of the frequency domain of 2-D linear systems into two equivalent 1-D systems having dynamics in different directions and connected by a feedback system. It is shown that under some assumptions the decomposition problem can be reduced to finding a realizable solution to the matrix polynomial equation X(z1)P(z2 )+Q(z1)Y(z2 )=D(z1, z2). A procedure for finding a realizable solution X(z1 ), Y(z2) to the equation is given  相似文献   

7.
The theorem states that every block square matrix satisfies its own m-D (m-dimensional, m⩾1) matrix characteristic polynomial. The exact statement and a simple proof of this theorem are given. The theorem refers to a matrix A subdivided into m blocks, and hence having dimension at least m. The conclusion is that every square matrix A with dimension M satisfies several m-D characteristic matrix polynomials with degrees N1 . . ., N m, such that N1+ . . . +Nm M  相似文献   

8.
A linear programming (LP) approach is proposed for the weighted graph matching problem. A linear program is obtained by formulating the graph matching problem in L1 norm and then transforming the resulting quadratic optimization problem to a linear one. The linear program is solved using a simplex-based algorithm. Then, approximate 0-1 integer solutions are obtained by applying the Hungarian method on the real solutions of the linear program. The complexity of the proposed algorithm is polynomial time, and it is O(n 6L) for matching graphs of size n. The developed algorithm is compared to two other algorithms. One is based on an eigendecomposition approach and the other on a symmetric polynomial transform. Experimental results showed that the LP approach is superior in matching graphs than both other methods  相似文献   

9.
An LQG (linear quadratic Gaussian) control-design problem involving a constraint on H disturbance attenuation is considered. The H performance constraint is embedded within the optimization process by replacing the covariance Lyapunov equation by a Riccati equation whose solution leads to an upper bound on L2 performance. In contrast to the pair of separated Riccati equations of standard LQG theory, the H-constrained gains are given by a coupled system of three modified Riccati equations. The coupling illustrates the breakdown of the separation principle for the H-constrained problem. Both full- and reduced-order design problems are considered with an H attenuation constraint involving both state and control variables. An algorithm is developed for the full-order design problem and illustrative numerical results are given  相似文献   

10.
A formal analysis of the fault-detecting ability of testing methods   总被引:1,自引:0,他引:1  
Several relationships between software testing criteria, each induced by a relation between the corresponding multisets of subdomains, are examined. The authors discuss whether for each relation R and each pair of criteria, C1 and C2 , R(C1, C2) guarantees that C1 is better at detecting faults than C2 according to various probabilistic measures of fault-detecting ability. It is shown that the fact that C 1 subsumes C2 does not guarantee that C1 is better at detecting faults. Relations that strengthen the subsumption relation and that have more bearing on fault-detecting ability are introduced  相似文献   

11.
The problems of filtering and smoothing are considered for linear systems in an H setting, i.e. the plant and measurement noises have bounded energies (are in L2), but are otherwise arbitrary. Two distinct situations for the initial condition of the system are considered; the initial condition is assumed known in one case, while in the other the initial condition is not known but the initial condition, the plant, and measurement noise are in some weighted ball of RnXL2. Finite-horizon and infinite-horizon cases are considered. Necessary and sufficient conditions are presented for the existence of estimators (both filters and smoothers) that achieve a prescribed performance bound, and algorithms that result in performance within the bounds are developed. In case of smoothers, the optimal smoother is also presented. The approach uses basic quadratic optimization theory in a time-domain setting, as a consequence of which both linear time-varying and time-invariant systems can be considered with equal ease. (In the smoothing problem, for linear time-varying systems, one considers only the finite-horizon case)  相似文献   

12.
The H2-optimal control of continuous-time linear time-invariant systems by sampled-data controllers is discussed. Two different solutions, state space and operator theoretic, are given. In both cases, the H2 sampled-data problem is shown to be equivalent to a certain discrete-time H2 problem. Other topics discussed include input-output stability of sampled-data systems, performance recovery in digital implementation of analog controllers, and sampled-data control of systems with the possibility of multiple-time delays  相似文献   

13.
The performance of job scheduling is studied in a large parallel processing system where a job is modeled as a concatenation of two stages which must be processed in sequence. Pi is the number of processors required by stage P as the total number of processors in the system. A large parallel computing system is considered where Max(P1, P2)⩾P≫1 and Max(P1 , P2)≫Min(P1, P2). For such systems, exact expressions for the mean system delay are obtained for various job models and disciplines. The results show that the priority should be given to jobs working on the stage which requires fewer processors. The large parallel system (i.e. P≫1) condition is then relaxed to obtain the mean system time for two job models when the priority is given to the second stage. Moreover, a scale-up rule is introduced to obtain the approximated delay performance when the system provides more processors than the maximum number of processors required by both stages (i.e. P>Max(P1, P2)). An approximation model is given for jobs with more than two stages  相似文献   

14.
Let φ(s,a)=φ0(s,a)+ a1φ1(s)+a2 φ2(s)+ . . .+akφ k(s)=φ0(s)-q(s, a) be a family of real polynomials in s, with coefficients that depend linearly on parameters ai which are confined in a k-dimensional hypercube Ωa . Let φ0(s) be stable of degree n and the φi(s) polynomials (i⩾1) of degree less than n. A Nyquist argument shows that the family φ(s) is stable if and only if the complex number φ0(jω) lies outside the set of complex points -q(jω,Ωa) for every real ω. In a previous paper (Automat. Contr. Conf., Atlanta, GA, 1988) the authors have shown that -q(jω,Ωa ), the so-called `-q locus', is a 2k convex parpolygon. The regularity of this figure simplifies the stability test. In the present paper they again exploit this shape and show that to test for stability only a finite number of frequency checks need to be done; this number is polynomial in k, 0(k3), and these critical frequencies correspond to the real nonnegative roots of some polynomials  相似文献   

15.
The solution of the l1 sensitivity minimization problem is shown to have two properties which contrast markedly with properties of the solutions to the better-known H∞ sensitivity minimization problem or the LQG (linear quadratic Gaussian) problem is given of a one-parameter family of first-order plants where the order of the l1-optimal compensator can be arbitrarily large, and thus it is impossible to bound the order of an l1-optimal compensator in terms of the order of the plant. A plant is considered which has a continuous one-parameter family of l1-optimal compensators, and thus l1-optimal compensators need not be unique. The author's two examples are considered to answer two questions left open by M.A. Daleh and J.B. Pearson (ibid., vol.32, p.314-23, 1987)  相似文献   

16.
Some transient and asymptotic performance properties are established for the model reference adaptive controller proposed by A.S. Morse (Proc. US-Italy Joint Seminar Syst., Models Feedback 1992). It is proved that the L2 norm of the tracking error is uniformly bounded by the initial parameter estimation error. Further, if the initial conditions are sufficiently small, it is shown that the L norm of the tracking error is uniformly bounded by the Lm2 norm of the reference signal. These transient bounds are independent of the signals richness and the adaptation gain, making them arguably the strongest transient results available in the literature. Second, excitation conditions for exponential stability, a property which is well known to insure some local performance measures, are given. To this end, it is shown that, modulo a signal dependent time scale change, Morse's estimator is equivalent to a normalized gradient plus filtering identifier  相似文献   

17.
The problem of distributed detection with consulting sensors in the presence of communication cost associated with any exchange of information (consultation) between sensors is considered. The system considered has two sensors, S1 and S2; S1 is the primary sensor responsible for the final decision u0 , and S2 is a consulting sensor capable of relaying its decision u2 to S1 when requested by S 1. The final decision u0 is either based on the raw data available to S1 only, or, under certain request conditions, also takes into account the decision u2 of sensor S2. Random and nonrandom request schemes are analyzed and numerical results are presented and compared for Gaussian and slow-fading Rayleigh channels. For each decision-making scheme, an associated optimization problem is formulated whose solution is shown to satisfy certain set design criteria that the authors consider essential for sensor fusion  相似文献   

18.
The problem of finding an internally stabilizing controller that minimizes a mixed H2/H performance measure subject to an inequality constraint on the H norm of another closed-loop transfer function is considered. This problem can be interpreted and motivated as a problem of optimal nominal performance subject to a robust stability constraint. Both the state-feedback and output-feedback problems are considered. It is shown that in the state-feedback case one can come arbitrarily close to the optimal (even over full information controllers) mixed H2/H performance measure using constant gain state feedback. Moreover, the state-feedback problem can be converted into a convex optimization problem over a bounded subset of (n×n and n ×q, where n and q are, respectively, the state and input dimensions) real matrices. Using the central H estimator, it is shown that the output feedback problem can be reduced to a state-feedback problem. In this case, the dimension of the resulting controller does not exceed the dimension of the generalized plant  相似文献   

19.
The problem of tightly bounding and shaping the frequency responses of two objective functions Ti(s)( i=1,2) associated with a closed-loop system is considered. It is proposed that an effective way of doing this is to minimize (or bound) the function max {∥T1(s)∥ , ∥T2(s)∥} subject to internal stability of the closed-loop system. The problem is formulated as an H control problem, and an iterative solution is given  相似文献   

20.
Considers the polynomial P(s)=t0 Sn+t1 Sn-1 +···+tn where 0<a jtjbj. Recently, V.L. Kharitonov (1978) derived a necessary and sufficient condition for this polynomial to have only zeros in the open left-half plane. Two lemmas are derived to investigate the existence of theorems similar to the theorem of Kharitonov. Using these lemmas, the theorem of Kharitonov is generalized for P(s) to have only zeros within a sector in the complex plane. The aperiodic case is also considered  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号