首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
In the second part of this study, the approach developed in Part I is used to analyze parameters which effect the natural frequencies and mode shapes of circular cylindrical shells. Therefore, amplitude ratios are determined analytically for shells of different geometries. The effects of circumferential and longitudinal wave numbers and geometrical parameters are studied on longitudinal, tangential and radial motions. Finally, numerical studies are conducted to investigate the effects of composite laminate parameters on resonance frequencies. Various laminate parameters such as stacking sequence and fiber angle are considered in the study.  相似文献   

2.
In this paper the method of harmonic balance is applied to study the nonlinear dynamic response in forced oscillations of a third-order nonlinear partial differential system obtained in Part I of this study. By using improved mode expansion examined in Part I, attention is concerned on the dynamic response of a rotating circular cylindrical shell with respect to the effect of precession of vibrating shape in the spectral neighborhood of one of the lowest natural frequencies. It can be found that the results obtained with the method developed in this study agree with numerical simulation in Part I very well, which indicate that this method has a good accuracy and is efficient for the dynamic analysis of rotating circular cylindrical shells. The stability of the period solutions is also examined in detail.  相似文献   

3.
This paper presents new exact solutions for vibration of thin circular cylindrical shells with intermediate ring supports, based on the Goldenveizer–Novozhilov shell theory (Theory of thin shells; The theory of thin elastic shells). An analytical method is proposed to study the vibration behaviour of the ring supported cylindrical shells. In the proposed method, the state-space technique is employed to derive the homogenous differential equation system for a shell segment and a domain decomposition approach is developed to cater for the continuity requirements between shell segments. Exact frequency parameters are presented in tables and design charts for circular cylindrical shells having multiple intermediate ring supports and various combinations of end support conditions. These exact vibration frequencies may serve as important benchmark values for researchers to validate their numerical methods for such circular cylindrical shell problems.  相似文献   

4.
Natural frequencies and buckling stresses of cross-ply laminated composite circular cylindrical shells are analyzed by taking into account the effects of higher-order deformations such as transverse shear and normal deformations, and rotatory inertia. By using the method of power series expansion of displacement components, a set of fundamental dynamic equations of a two-dimensional higher-order theory for laminated composite circular cylindrical shells made of elastic and orthotropic materials is derived through Hamilton's principle. Several sets of truncated approximate higher-order theories are applied to solve the vibration and buckling problems of laminated composite circular cylindrical shells subjected to axial stresses. The total number of unknowns does not depend on the number of layers in any multilayered shells. In order to assure the accuracy of the present theory, convergence properties of the first natural frequency and corresponding buckling stress for the fundamental mode r=s=1 are examined in detail. The internal and external works are calculated and compared to prove the numerical accuracy of solutions. Modal transverse shear and normal stresses can be calculated by integrating the three-dimensional equations of equilibrium in the thickness direction, and satisfying the continuity conditions at the interface between layers and stress boundary conditions at the external surfaces. It is noticed that the present global higher-order approximate theories can predict accurately the natural frequencies and buckling stresses of simply supported laminated composite circular cylindrical shells within small number of unknowns.  相似文献   

5.
This paper presents the study on vibration behavior of functionally graded material (FGM) cylindrical shell with the effects of internal pressure and ring support. The FGM properties are graded along the thickness direction of the shell. The FGM shell equations with internal pressure and ring support are established based on strain-displacement relationship using Love-Kirchhoff shell theory. The governing equations of motion were solved by using energy functional and by applying Ritz method. The boundary conditions represented by end conditions of the FGM cylindrical shell are simply supported-simply supported (SS-SS), clamped-clamped (C-C), free-free (F-F), clamped-free (C-F), clamped-simply supported (C-SS), free-simply supported (F-SS), free-sliding (F-SL) and clamped-sliding (C-SL). To check the validity and accuracy of the present method, the results obtained are compared with those available in the literature. The influence of internal pressure, ring support position and the effect of the different boundary conditions on natural frequencies characteristics are studied. These results presented can be used as important benchmark for researchers to validate their numerical methods when studying natural frequencies of shells with internal pressure and ring support.  相似文献   

6.
In this analysis, a comparative study for natural frequencies of two-layered cylindrical shells was presented with one layer composed of functionally graded material and the other layer of isotropic material. Love’s thin shell theory was exploited for the strain-displacement and curvature-displacement relationships. For governing frequency equations, the Rayleigh-Ritz method was utilized to minimize the Lagrangian functional in the form of an eigenvalue problem. Frequency spectra were computed for long, short, thick, and thin cylindrical shells by varying the nondimensional geometrical parameters, length-to-radius and thickness-to-radius ratios for a simply supported end condition. Influence of different configurations of cylindrical shells on the shell frequencies was studied. For validity, the results obtained were compared with some results of isotropic and single-layered functionally graded cylindrical shells from the literature.  相似文献   

7.
This paper presents the natural frequencies of stepped thickness square and rectangular plates together with the mode shapes of vibration. The transverse deflection of a stepped thickness plate is written in a series of the products of the deflection functions of beams parallel to the edges satisfying the boundary conditions, and the frequency equation of the plate is derived by the energy method. By use of the frequency equation, the natural frequencies (the eigenvalues of vibration) and the mode shapes are calculated numerically in good accuracy for square and rectangular plates with edges simply supported or elastically restrained against rotation, having square, circular or elliptical stepped thickness, from which the effects of the stepped thickness on the vibration are studied.  相似文献   

8.
This work applies the famous Ritz method to analyze the free vibrations of rectangular plates with internal cracks or slits. To retain the important and useful feature of the Ritz method providing the upper bounds on exact natural frequencies, the paper proposes a new set of admissible functions that are able to properly describe the stress singularity behaviors near the tips of the crack and meet the discontinuous behaviors of the exact solutions across the crack. The validity of the proposed set of functions is confirmed through comprehensive convergence studies on the frequencies of simply supported square plates with horizontal center cracks having different lengths. The convergent frequencies show excellent agreement with published accurate results obtained by an integration equation technique, and are more accurate than those obtained by a previously published approach using the Ritz method combined with a domain decomposition technique. Finally, the present solution is employed to obtain accurate natural frequencies and mode shapes for simply supported and completely free square plates with internal cracks having various locations, lengths, and angular orientations. Most of the configurations considered here have not been analyzed in the previously published literature. The present results are novel, and are the first published vibration data for completely free rectangular plates with internal cracks and for plates with internal cracks, which are not parallel to the boundaries.  相似文献   

9.
This papers deals with the radial vibration of a row of cylindrical panels of finite length using the concept of wave propagation in periodic structures. For this study, the structure is considered as an assemblage of a number of identical cylindrically curved panels each of which will be referred to as a periodic element. For a given geometry dispersion curves of the propagation constant versus (non-dimensional) natural frequency have been drawn corresponding to the circumferential wave propagation. New conclusions that have emerged from this study are as follows. It is shown that by a proper choice of the periodic element the bounding frequencies and the corresponding modes in all the propagation bands can be determined. These have been shown to correspond to a single curved panel with all its edges simply supported. It is noted that there are no attenuation gaps in the entire frequency spectrum beyond the lowest bounding frequency. This is a unique feature of circumferential wave propagation around circular cylindrical shells and panels, as opposed to the wave propagation of periodically supported beams and rectangular panels without curvature. The natural frequency corresponding to every circumferential mode of the complete shell has been identified on the propagation constant curve. It has been observed that the natural frequencies of a cylindrically curved panel of a given curvature and length but of different circumferential arc length (corresponding to different angles subtended at the centre of any circular cross-section) may also be identified on the same propagation constant curve. Finally, it is shown that the same propagation constant curve may also be used to determine all the natural frequencies of a finite row of curved panels with the extreme edges simply supported. Wherever possible the numerical results have been compared with those obtained independently from finite element analysis and/or results available in the literature. Flutter analysis of multi-span curved panels using a wave approach is the ultimate objective of this work.  相似文献   

10.
This paper presents a new approach for analyzing transverse bending and vibration of circular cylindrical beams with radial nonhomogeneity. The radial nonhomogeneity may be continuous or piecewise-constant, corresponding a functionally graded circular cylinder or a multi-layered circular cylinder, respectively. Different from the Euler-Bernoulli and Timoshenko theories of beams, our analysis considers shear deformation, but does not need to introduce a shear correction factor. Using the shear-stress-free condition at the surface of the cylinder, coupled governing equations for deflection and rotation angle are derived, and then converted to a single governing equation. The influences of gradient index on the deflection and stress distribution for cantilever and simply-supported beams are studied. Natural frequencies of free vibration of a cylindrical beam with circular cross-section are calculated for different power-law gradients. In particular, a circular cylindrical shell may be taken as a special case of a bi-layered cylinder where the material properties of the inmost cylinder vanish. For this case, the natural frequencies for simply-supported and clamped-clamped cylindrical shells are evaluated and compared with those using three-dimensional theory. Our results coincide well with the previous.  相似文献   

11.
The free vibration of a circular plate with multiple perforations is analyzed by using the Rayleigh-Ritz method. Admissible functions are assumed to be separable functions of radial and tangential coordinates. Trigonometric functions are assumed in the circumferential direction. The radial shape functions are the boundary characteristic orthogonal polynomials generated following the Gram-Schmidt recurrence scheme. The assumed functions are used to estimate the kinetic and the potential energies of the plate depending on the number and the position of the perforations. The eigenvalues, representing the dimensionless natural frequencies, are compared with the results obtained using Bessel functions, where the exact solution is available. Moreover, the eigenvectors, which are the unknown coefficients of the Rayleigh-Ritz method, are used to present the mode shapes of the plate. To validate the analytical results of the plates with multiple perforations, experimental investigations are also performed. Two unique case studies that are not addressed in the existing literature are considered. The results of the Rayleigh-Ritz method are found to be in good agreement with those from the experiments. Although the method presented can be employed in the vibration analysis of plates with different boundary conditions and shapes of the perforations, circular perforations that are free on the edges are studied in this paper. The results are presented in terms of dimensionless frequencies and mode shapes.  相似文献   

12.
This paper presents the formulation and numerical analysis of circular cylindrical shells by the local adaptive differential quadrature method (LaDQM), which employs both localized interpolating basis functions and exterior grid points for boundary treatments. The governing equations of motion are formulated using the Goldenveizer–Novozhilov shell theory. Appropriate management of exterior grid points is presented to couple the discretized boundary conditions with the governing differential equations instead of using the interior points. The use of compactly supported interpolating basis functions leads to banded and well-conditioned matrices, and thus, enables large-scale computations. The treatment of boundary conditions with exterior grid points avoids spurious eigenvalues. Detailed formulations are presented for the treatment of various shell boundary conditions. Convergence and comparison studies against existing solutions in the literature are carried out to examine the efficiency and reliability of the present approach. It is found that accurate natural frequencies can be obtained by using a small number of grid points with exterior points to accommodate the boundary conditions.  相似文献   

13.
This paper presents a combined finite element and model Lamb waves propagation parameters method as a tool for structural health monitoring in composite materials. Modal analysis allows identifying the mode conversions induced by the defects. A simulation combining a lossless finite element approach and Lamb wave propagation parameter for finding natural frequencies and mode shapes of the structures in undamaged and damaged condition is proposed. This analysis is performed on two carbon-fiber-reinforced plastic bars in both undamaged and damaged state, where the two damaged states are (1) having a cut partway through the bar, perpendicular to the long axis of the bar and (2) having a circular hole. The lamb wave propagation parameters are calibrated using the ultrasonic pulse generator test setup. The natural frequencies for the theoretical, finite element and experimental results are compared and close agreement is found between the frequencies obtained experimentally and computationally.  相似文献   

14.
In operational modal analysis, only unscaled mode shapes can be obtained. The mass-change method is in many cases the simplest way to estimate the scaling factors, which involves repeated modal testing after changing the mass at different points of the structure where the mode shapes are known. With this method, the scaling factors are determined using the natural frequencies and mode shapes of both the modified and the unmodified structure. However, the uncertainty on the scaling-factor estimation depends on the modal-analysis accuracy and the mass-change strategy (number, magnitude, and location of the masses) used to modify the dynamic behavior of the structure. In this paper, a procedure to optimize the mass-change strategy is proposed, which uses the modal parameters (natural frequencies and mode shapes) of the original structure as the basic information.  相似文献   

15.
In operational modal analysis, only unscaled mode shapes can be obtained. The mass-change method is in many cases the simplest way to estimate the scaling factors, which involves repeated modal testing after changing the mass at different points of the structure where the mode shapes are known. With this method, the scaling factors are determined using the natural frequencies and mode shapes of both the modified and the unmodified structure. However, the uncertainty on the scaling-factor estimation depends on the modal-analysis accuracy and the mass-change strategy (number, magnitude, and location of the masses) used to modify the dynamic behavior of the structure. In this paper, a procedure to optimize the mass-change strategy is proposed, which uses the modal parameters (natural frequencies and mode shapes) of the original structure as the basic information.  相似文献   

16.
This study gives a brief work on vibration characteristics of cylindrical shells submerged in an incompressible fluid. The shell is presumed to be structured from functionally graded material. The effect of the fluid is introduced by using the acoustic wave equation. Love’s first order thin shell theory is utilized in the shell dynamical equations. The problem is framed by combining shell dynamical equations with the acoustic wave equation. Fluid-loaded terms are associated with Hankel function of second kind. Wave propagation approach is employed to solve the shell problem. Some comparisons of numerical results are performed for the natural frequencies of simply supported-simply supported, clamped-clamped and clamped-simply supported boundary conditions of isotropic as well as functionally graded cylindrical shells to check the validity of the present approach. The influence of fluid on the submerged functionally graded cylindrical shells is noticed to be very pronounced.  相似文献   

17.
Vibration analysis of simply supported rotating cross-ply laminated stiffened cylindrical shell is performed using an energy approach which includes variational and averaging method. The stiffeners include rings and stringers. The equations are obtained by Rayleigh-Ritz method and Sander’s relations. To validate the present method, the results are compared to the results available in other literatures. A good adoption is observed in different type of results including isotropic shells, rotating laminated shells, stiffened isotropic shells and stiffened laminated shells. Then, the optimization of parameters due to shell and stiffeners is conducted by genetic algorithm (GA) method under weight and frequency constraints. Stiffener shape, material properties and dimensions are also optimized.  相似文献   

18.
This paper presents an exact three-dimensional free vibration analysis of a transversely isotropic piezoelectric circular cylindrical panel. The general solution for coupled equations for piezoelectric media that was recently proposed by Ding et al. (Int. J. Solids Struct. 33 (1996) 2283) is employed. By using the variable separation method, three-dimensional exact solutions are obtained under several boundary conditions. Numerical results are finally presented and compared with available data in literature. The results show the non-dimensional frequencies of the piezoelectric panel are bigger than that of the non-piezoelectric one.  相似文献   

19.
基于频率敏感度和振型的圆柱壳损伤检测方法研究   总被引:2,自引:0,他引:2  
基于频率敏感度和振型,在损伤定位准则的基础上,提出一种确定圆柱壳中损伤位置和程度的方法.通过对比由于损伤引起的理论和测量频率改变百分比,可以确定损伤的轴向位置.由于圆柱壳的轴对称性,引入某些特定位置的振型信息来确定损伤的环向位置,并且利用一阶近似方法估计损伤程度.对三种边界条件下(自由、简支、悬臂)的圆柱壳数值算例结果表明,文中方法能准确定位单、多位置损伤,而且可以在较小的误差范围内估计出损伤程度.最后利用含噪声的测量频率研究该方法的稳定性.  相似文献   

20.
The wave propagation approach is extended to coupled frequency analysis of finite cylindrical shells submerged in a dense acoustic medium. Comparison of the results by the present method and numerical FEM/BEM has been carried out. A finite cylindrical shell enclosed with plate end-caps was modeled for coupled frequency analysis. The first eight coupled natural frequencies were obtained using SYSNOISE. These results are compared with the new method and good agreement has been found. With the new method the effects of shell parameters, m,n,h/R,L/R and boundary conditions, on the coupled frequencies are investigated. The coupled frequency curves are also u-shaped as the uncoupled frequency curves. As the circumferential mode n increases, the difference between the coupled and uncoupled frequencies reduces at small mode n, but increases after the n where the fundamental frequency is achieved. The effects of boundary conditions are significant at small mode n. Due to the coupling effects the transition of fundamental coupled frequency is earlier with the h/R ratios than that of the uncoupled case. Both the coupled and uncoupled frequencies increase with the h/R ratios, but at different rates which show the different coupling effects on the different wave modes. With the present method the calculation of coupled frequency of submerged cylindrical shells is relatively easy, quick but with good accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号