首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
基于改进粒子群算法的电力系统无功优化   总被引:8,自引:0,他引:8  
电力系统无功优化问题是一个多变量、多约束的混合非线性规划问题。提出了一种改进粒子群算法用以解决这一复杂优化问题。在改进的算法中,首先结合混沌优化思想对粒子群进行初始化,减轻了粒子初始位置的选择对算法优化性能的影响;在进化过程中引入了自探索行为,使得粒子的搜索过程更加符合实际;引入了变异机制及3种判断陷入局部最优的标准,当发现粒子群陷入局部最优时,通过变异,帮助粒子跳出局部陷阱,增加发现最优解的机会。给出了问题的求解方法,并对IEEE 6、14节点系统进行了仿真计算,实验数值对比表明了算法的可行性和有效性。  相似文献   

2.
将粒子群优化算法PSO应用到电力系统无功优化中,以网损最小为目标函数,建立了PSO无功优化的数学模型,并进行了仿真.仿真结果表明,PSO算法具有较好的全局寻优能力和较快的收敛速度,在无功优化领域有广阔的前景.  相似文献   

3.
基于改进粒子群算法的电力系统无功优化研究   总被引:1,自引:0,他引:1  
粒子群( PSO)优化算法具有并行处理的优点,但易于陷入早熟收敛,针对这一问题,本文提出了一种改进粒子群无功优化算法,该算法使用了自适应动态惯性权重,充分利用了遗传算法中交叉变异和种群移动均匀的特性,从而有效克服了PSO算法易于陷入局部最优和早熟收敛的缺陷,具有良好的寻优速度和计算精度,实例计算取得了良好的结果,从而验...  相似文献   

4.
阐述了一种改进粒子群的无功优化方法.粒子群优化(PSO)算法是进化计算领域中的一个新的分支,其源于对鸟群和鱼群群体运动行为的研究.针对粒子群优化容易陷入局部极值点的问题,文章提出混沌粒子群算法,该算法可以较好地避免PSO算法过快收敛于局部最优解,有较快的收敛速度.文中将该算法应用于求解电力系统无功优化问题,并与标准PSO算法的性能进行了对比,仿真计算证明该算法是有效、可行的.  相似文献   

5.
吴艳 《山西电力》2012,(3):42-44
针对离散粒子群算法直接应用于无功优化后存在优化迭代过程易陷入局部最优解且后期收敛速度慢等问题,结合混沌算法,提出更加有效的改进离散粒子群算法求解多目标无功优化问题。同时,对每次迭代后产生的控制变量进行混沌优化,从而避免无功优化控制变量陷入局部极值区域。通过算例分析表明,采用改进离散粒子群算法进行无功优化,能够及时跳出局部最优得到全局最优解,且收敛速度快。  相似文献   

6.
基于混合粒子群优化算法的电力系统无功优化   总被引:1,自引:1,他引:1  
应用粒子群优化算法(PSO)求解电力系统无功优化问题,提出基于混沌搜索的混合粒子群优化算法,以克服PSO容易早熟而陷入局部最优解的缺点。该算法引入了基于群体适应度方差的早熟判断机制,当算法陷入早熟时,利用混沌运动的遍历性、随机性和规律性等特性,先对当前粒子群体中的最优粒子进行混沌寻优,然后把混沌寻优的结果随机替换群体中的一个粒子,从而提高了PSO的寻优特性。通过对IEEE 14、IEEE 30、IEEE 118等标准测试系统进行无功优化,并与遗传算法、标准PSO进行比较,表明该算法具有更高的搜索效率和更好的全局优化能力。  相似文献   

7.
针对粒子群(PSO)算法存在易陷入局部最优的缺点,提出了一种新的基于种群多样性指数的自适应粒子群优化算法(ASPO)。该算法利用种群多样性信息对惯性权重进行非线性调整,并在算法后期引入速度变异算子和位置交叉算子,使算法摆脱后期易于陷入局部最优的束缚,同时又保持前期搜索速度快特性。将其应用于电力系统无功优化,对IEEE-30节点系统进行仿真计算,并与GA、PSO等算法比较,结果表明APSO算法能有效应用于电力系统无功优化,其全局收敛性能、收敛精度和收敛稳定性均较GA、PSO算法有了明显提高。  相似文献   

8.
根据电力系统无功优化问题的特点,提出一种用于电力系统无功优化的最小欧氏距离下改进竞争小生境粒子群算法,利用该算法来克服粒子群优化算法容易早熟而陷入局部最优解的不足.通过对测试系统IEEE30节点进行电力系统无功优化的仿真,说明该算法能以更快的速度得到最优解,其性能明显优于其他算法.  相似文献   

9.
针对云粒子群算法(CPSO)在电力系统无功优化中易陷入局部极值,也存在早熟收敛问题,将基于云数字特征(期望值、熵值、超熵值)编码的云粒子群算法进行了改进:依据解空间的变换将局部搜索和全局搜索相结合,用正态云算子实现粒子的进化学习和交叉变异操作。改进的算法在时间、存储量性能上有了明显的提高,将改进后的算法应用到IEEE30节点标准测试系统和电网中进行仿真运算,与其它算法进行比较。结果表明,该方法在配电网无功优化中能取得更好的全局最优解,加快了收敛速度,提高了收敛精度。  相似文献   

10.
根据简单交流电路的电压电流特性推导出节点电压临界崩溃的条件,提出了无功裕度的概念.根据节点无功裕度的排序确定了电力系统无功补偿点,并在此基础上用粒子群算法进行电力系统无功优化.该方法使电力系统无功分布更合理,实现无功就地补偿.IEEE 14节点算例的仿真结果表明该方法是有效和可行的.  相似文献   

11.
改进PSO算法用于电力系统无功优化的研究   总被引:3,自引:0,他引:3  
袁松贵  吴敏  彭赋  朱豆  杨珏 《高电压技术》2007,33(7):159-162
由于电力系统无功优化为一有多变量、多约束、非线性的组合优化问题,针对传统粒子群算法收敛精度不高、易陷入局部最优的缺点,提出了一种改进的算法:分别赋予传统算法中的粒子以不同的初始惯性权重,权重较大的粒子拓展搜索空间,惯性权重较小的粒子完成局部强化寻优的工作。用改进的PSO算法无功优化计算IEEE-14节点系统的结果表明:新算法不仅避免了惯性因子权重调整的困难,而且较好地协调了算法的局部与全局搜索能力,可较好地解决电力系统的无功优化问题。  相似文献   

12.
粒子群优化算法是一种简便易行,收敛快速的演化计算方法。但该算法也存在收敛精度不高,易陷入局部极值的缺点。针对这些缺点,对原算法加以改进,引入了自适应的惯性系数和模拟退火算法的思想,提出了一种新的模拟退火粒子群优化(simulated annealing particle swarm optimization,SA-PSO)算法,并将其应用于电力系统无功优化。对IEEE14节点系统进行了仿真计算,并与PSO算法作了比较,结果表明SA-PSO算法全局收敛性能及收敛精度均较PSO算法有了较大提高。  相似文献   

13.
黄玮  林知明  李波 《电力学报》2007,22(4):443-446
针对粒子群算法局部搜索能力较弱和存在早熟收敛的问题,提出将粒子群优化算法结合禁忌搜索的混合算法,并应用它来求解电力系统无功优化问题。该混合算法是以粒子群优化算法为主框架,以禁忌搜索算法作为个体群继续在邻域中寻优,寻优结果对粒子群算法的输出做了更新。混合算法保留了粒子群优化算法的并行处理性,同时利用了禁忌搜索算法的较强的"爬山"能力,加快了混合优化算法的收敛时间和提高了收敛解的有效性。  相似文献   

14.
基于微粒群优化算法的电力系统动态无功优化   总被引:7,自引:2,他引:7  
根据系统负荷曲线变化趋势按单调性将一天的预测负荷曲线划分为若干(小于24)个时段,并将动作次数约束还原为经济成本,将它与网损费用等之和作为目标函数,并考虑了各种运行约束条件,采用微粒群优化算法进行计算,该算法收敛速度较快。与静态无功优化模型相比表明,该无功优化模型更适合给定的地区电网,优化后全天的网损略有增大,但变压器抽头调节次数以及电容器组投切次数明显减少。  相似文献   

15.
针对电力系统无功优化问题,提出了1种自适应变异特性粒子群算法来克服粒子群优化方法容易早熟而陷入局部最优解的缺点。该方法以种群适应度方差为量化指标,动态衡量和监视粒子群体的聚集情况,并对聚集的粒子赋予变异操作,用以提高整个群体的全局寻优能力。通过对IEEE-6和IEEE-30测试系统的无功优化问题计算及结果分析表明该方法快速、高效、准确。  相似文献   

16.
含分布式电源(DG)配电网的无功优化是一个复杂的非线性优化问题,文中采用改进的粒子群算法(PSO)对配电网进行无功优化计算,建立以系统网损和电压平均偏离最小为目标函数,节点电压和电容器投切容量为约束条件的优化模型。在PSO中引入位置方差防止PSO陷入局部最优解,根据种群中粒子的适应度值对粒子进行变异处理,在保证算法收敛速度的基础上,改善算法性能。以含分布式电源的IEEE14节点配电系统为例进行无功优化分析,结果表明DG能增强电网运行的稳定性,所提算法具有较好的优化性能。  相似文献   

17.
文中提出一种多智能体量子粒子群优化算法(Multi Agent Quantum Particle Swam Optimization,MAQPSO)求解电力系统无功优化问题,改善了传统量子粒子群算法后期收敛速度慢、易陷入局部最优解等缺点。该算法结合了量子粒子群算法和多智能体进化思想,每一个Agent相当于量子粒子群优化算法中的一个粒子,通过Agent的邻域竞争、自学习等操作,使得算法能够更迅速、更精确地收敛到全局最优解。通过对IEEE14、30、57和118节点系统的优化仿真,结果表明该算法有收敛精度高、寻优速度快等优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号