共查询到17条相似文献,搜索用时 93 毫秒
1.
基于改进粒子群算法的电力系统无功优化 总被引:8,自引:0,他引:8
电力系统无功优化问题是一个多变量、多约束的混合非线性规划问题。提出了一种改进粒子群算法用以解决这一复杂优化问题。在改进的算法中,首先结合混沌优化思想对粒子群进行初始化,减轻了粒子初始位置的选择对算法优化性能的影响;在进化过程中引入了自探索行为,使得粒子的搜索过程更加符合实际;引入了变异机制及3种判断陷入局部最优的标准,当发现粒子群陷入局部最优时,通过变异,帮助粒子跳出局部陷阱,增加发现最优解的机会。给出了问题的求解方法,并对IEEE 6、14节点系统进行了仿真计算,实验数值对比表明了算法的可行性和有效性。 相似文献
2.
3.
4.
5.
针对离散粒子群算法直接应用于无功优化后存在优化迭代过程易陷入局部最优解且后期收敛速度慢等问题,结合混沌算法,提出更加有效的改进离散粒子群算法求解多目标无功优化问题。同时,对每次迭代后产生的控制变量进行混沌优化,从而避免无功优化控制变量陷入局部极值区域。通过算例分析表明,采用改进离散粒子群算法进行无功优化,能够及时跳出局部最优得到全局最优解,且收敛速度快。 相似文献
6.
基于混合粒子群优化算法的电力系统无功优化 总被引:1,自引:1,他引:1
应用粒子群优化算法(PSO)求解电力系统无功优化问题,提出基于混沌搜索的混合粒子群优化算法,以克服PSO容易早熟而陷入局部最优解的缺点。该算法引入了基于群体适应度方差的早熟判断机制,当算法陷入早熟时,利用混沌运动的遍历性、随机性和规律性等特性,先对当前粒子群体中的最优粒子进行混沌寻优,然后把混沌寻优的结果随机替换群体中的一个粒子,从而提高了PSO的寻优特性。通过对IEEE 14、IEEE 30、IEEE 118等标准测试系统进行无功优化,并与遗传算法、标准PSO进行比较,表明该算法具有更高的搜索效率和更好的全局优化能力。 相似文献
7.
针对粒子群(PSO)算法存在易陷入局部最优的缺点,提出了一种新的基于种群多样性指数的自适应粒子群优化算法(ASPO)。该算法利用种群多样性信息对惯性权重进行非线性调整,并在算法后期引入速度变异算子和位置交叉算子,使算法摆脱后期易于陷入局部最优的束缚,同时又保持前期搜索速度快特性。将其应用于电力系统无功优化,对IEEE-30节点系统进行仿真计算,并与GA、PSO等算法比较,结果表明APSO算法能有效应用于电力系统无功优化,其全局收敛性能、收敛精度和收敛稳定性均较GA、PSO算法有了明显提高。 相似文献
8.
9.
针对云粒子群算法(CPSO)在电力系统无功优化中易陷入局部极值,也存在早熟收敛问题,将基于云数字特征(期望值、熵值、超熵值)编码的云粒子群算法进行了改进:依据解空间的变换将局部搜索和全局搜索相结合,用正态云算子实现粒子的进化学习和交叉变异操作。改进的算法在时间、存储量性能上有了明显的提高,将改进后的算法应用到IEEE30节点标准测试系统和电网中进行仿真运算,与其它算法进行比较。结果表明,该方法在配电网无功优化中能取得更好的全局最优解,加快了收敛速度,提高了收敛精度。 相似文献
10.
11.
改进PSO算法用于电力系统无功优化的研究 总被引:3,自引:0,他引:3
由于电力系统无功优化为一有多变量、多约束、非线性的组合优化问题,针对传统粒子群算法收敛精度不高、易陷入局部最优的缺点,提出了一种改进的算法:分别赋予传统算法中的粒子以不同的初始惯性权重,权重较大的粒子拓展搜索空间,惯性权重较小的粒子完成局部强化寻优的工作。用改进的PSO算法无功优化计算IEEE-14节点系统的结果表明:新算法不仅避免了惯性因子权重调整的困难,而且较好地协调了算法的局部与全局搜索能力,可较好地解决电力系统的无功优化问题。 相似文献
12.
粒子群优化算法是一种简便易行,收敛快速的演化计算方法。但该算法也存在收敛精度不高,易陷入局部极值的缺点。针对这些缺点,对原算法加以改进,引入了自适应的惯性系数和模拟退火算法的思想,提出了一种新的模拟退火粒子群优化(simulated annealing particle swarm optimization,SA-PSO)算法,并将其应用于电力系统无功优化。对IEEE14节点系统进行了仿真计算,并与PSO算法作了比较,结果表明SA-PSO算法全局收敛性能及收敛精度均较PSO算法有了较大提高。 相似文献
13.
14.
15.
16.
含分布式电源(DG)配电网的无功优化是一个复杂的非线性优化问题,文中采用改进的粒子群算法(PSO)对配电网进行无功优化计算,建立以系统网损和电压平均偏离最小为目标函数,节点电压和电容器投切容量为约束条件的优化模型。在PSO中引入位置方差防止PSO陷入局部最优解,根据种群中粒子的适应度值对粒子进行变异处理,在保证算法收敛速度的基础上,改善算法性能。以含分布式电源的IEEE14节点配电系统为例进行无功优化分析,结果表明DG能增强电网运行的稳定性,所提算法具有较好的优化性能。 相似文献
17.
文中提出一种多智能体量子粒子群优化算法(Multi Agent Quantum Particle Swam Optimization,MAQPSO)求解电力系统无功优化问题,改善了传统量子粒子群算法后期收敛速度慢、易陷入局部最优解等缺点。该算法结合了量子粒子群算法和多智能体进化思想,每一个Agent相当于量子粒子群优化算法中的一个粒子,通过Agent的邻域竞争、自学习等操作,使得算法能够更迅速、更精确地收敛到全局最优解。通过对IEEE14、30、57和118节点系统的优化仿真,结果表明该算法有收敛精度高、寻优速度快等优点。 相似文献