共查询到20条相似文献,搜索用时 78 毫秒
1.
置信度判别嵌入式隐马尔可夫模型人脸识别 总被引:2,自引:0,他引:2
为了提高人脸识别率,提出了一种优化置信度的判别嵌入式隐马尔可夫(EHMM)人脸识别方法。提出的方法基于假设检验,通过最小化检验错误率得到优化置信度判别式训练准则。在优化置信度判别式训练准则的前提下,通过参数估计求解判别式转换矩阵,提取出具有判别性、低维度的图像特征,确保观察样本能正确地分配到其对应的模型状态,以提高所训练出的EHMM模型的正确识别率。理论分析证明了优化置信度判别式训练准则的有效性,详细的实验及与现有方法的比较结果表明,提出的识别方法具有更好的识别性能。 相似文献
2.
人脸识别是图像识别中受人关注较多的领域之一,人们希望计算机能有像人类一样有强大的视觉能力。人脸识别属于生物特征是识别一种,虽然准确性不如虹膜、指纹的识别,但由于它的简单、直观、易于采集特征且对用户无害,使它成为容易被用户接受的一种生物特征识别。该文介绍了基于隐马尔科夫模型进行人脸识别的算法和具体系统的实现。首先介绍识别所需的图像特征提取算法"二维离散余弦变换"和匹配算法"高斯混合模型和隐马尔可夫模型",其次介绍依据算法实现系统的过程。 相似文献
3.
基于连续隐马尔可夫模型的人脸识别方法 总被引:1,自引:0,他引:1
提出了一种基于连续隐马尔可夫模型的人脸图像识别方法,主要内容包括以下方面:①由于奇异值向量具有稳定性.转置不变性等特点,对归一化的人脸图像,采用奇异值分解抽取人脸图像特征作为观察值序列;②在人脸识别中应用连续隐马尔可夫模型,采用双高斯概率密度函数训练,建立HMM模型,再利用建好的HMM模型进行识别.实验结果显示,所提出的方法减少了数据计算量,运行速度快,并提高了识别率,完全满足人脸识别系统实时性要求. 相似文献
4.
提出一种改进的基于隐马尔可夫模型的人脸识别方法。利用人脸隐马尔可夫模型的结构特征和Viterbi算法的特点,对特征观察序列进行分割,使用部分序列对所有隐马尔可夫模型递进地计算最大相似度,同时排除相似度最小的隐马尔可夫模型,减少观察序列的计算次数,提高识别效率。实验结果表明,该方法能在不降低识别率的情况下,有效提高识别速度。 相似文献
5.
提出了一种基于拉普拉斯脸和隐马尔可夫模型的视频人脸识别方法。在训练过程中,采用拉普拉斯脸方法将每一视频序列中的人脸图像映射到拉普拉斯空间,将降维后的特征作为观测值,通过隐马尔可夫模型得到每一训练视频的统计特性和时间动态特性。在识别过程中,用每一个训练视频的隐马尔可夫模型来分析测试视频的时间动态特性,计算出每一训练模型产生该序列的概率,概率最大值所对应的模型就是待识别序列所属的类别。实验结果表明,该方法能够很好地进行视频人脸识别。 相似文献
6.
HOU Chuan-yu 《数字社区&智能家居》2008,(7)
随着用户对于数据挖掘的精确度与准确度要求的日益提高,马尔可夫模型与隐马尔可夫模型被广泛用于数据挖掘领域。本文阐述了马尔可夫模型和隐马尔可夫模型数据挖掘领域的应用,以及隐马尔可夫模型可解决的问题,以供其他研究者借鉴。 相似文献
7.
侯传宇 《数字社区&智能家居》2008,(3):1186-1189
随着用户对于数据挖掘的精确度与准确度要求的日益提高,马尔可夫模型与隐马尔可夫模型被广泛用于数据挖掘领域。本文阐述了马尔可夫模型和隐马尔可夫模型数据挖掘领域的应用,以及隐马尔可夫模型可解决的问题,以供其他研究者借鉴。 相似文献
8.
基于小波变换和隐马尔可夫模型的人脸识别方法 总被引:4,自引:1,他引:4
提出了基于小波变换和隐马尔可夫模型的人脸识别方法。对原始图像采用小波分解后,原始图像被分解到不同的频带上。利用小波理论分析可知,在每一级分解中,低频子图像包含了原始图像的主要描述信息,而其他3个高频子图像包含的信息较少,对模式分类的作用也较小,所以可忽略不计。该算法首先对图像进行3级小波分解,然后把3个不同分辨率的低频子图像由小到大排列成树状结构,形成低频小波树。接着利用主元分析对每个小波树枝进行去相关、降维,形成特征小波树枝,并把它作为观测向量对隐马尔可夫模型进行训练,把优化的模型参数用于人脸识别,实验结果表明,该方法识别率较高,具有很好的发展前景。 相似文献
9.
10.
11.
采用支持向量机(SVM)和隐马尔可夫模型(HMM)相结合的方法进行人脸识别。首先对照片中的人脸进行定位,从定位区域提取人脸各个器官的独立基特征,然后使用支持向量机和隐马尔可夫混合模型对定位区域进行人脸识别。利用SVM和HMM结合的优点,取得较高的识别率。 相似文献
12.
为了获得具有较高识别率的算法,提出了一种将Fisher线性鉴别分析(Fisher Linear Discriminant Analysis)、复主分量分析(Principal Analysis in the Complex Space)与隐马尔可夫模型(Hidden Markov Models)相结合进行人脸识别的方法。对于输入的不同光照、人脸表情和姿势的图像先进行归一化处理,然后将归一化后的图像转化成一维向量,再用FLDA方法提取每幅图像的特征,形成新的复向量空间;通过运用复主分量分析,来抽取人脸图像的有效鉴别特征;最后通过HMM对这些特征进行训练,得到一个优化的HMM并应用于识别。在ORL人脸数据库中进行实验,实验结果表明,该方法具有较高的识别率。 相似文献
13.
针对存在两个未知隐含特性的步态识别问题提出了一种新的识别算法,将特性分别看作“内容”和“风格”,对图像序列以状态确定的连续HMM EM估计“内容”类型,引入非对称双线性模型理论对结果建模,通过SVD和NN聚类实现对“风格”的归类判定。实验选择人体两侧轮廓到质心垂线距离作为步态特征,通过在CASIA步态库上的实验证明,该算法能有效提高判别率,对未知风格或内容类型判断有较好的适应性。同时对影响步态识别准确性的其他因素也做了讨论。 相似文献
14.
汽车司机疲劳驾驶是引发交通事故的一个重要原因。驾驶员在正常驾驶、瞌睡驾驶及疲劳驾驶3种状态下的眼睛张开程度有一定的区别。提出了一种ICA结合隐马尔可夫模型(HMM)识别眼部状态的识别算法,首先对彩色图像进行二值化处理,然后利用ICA算法进行眼部状态特征提取,为了加快特征提取的速度,这里采用FastICA算法;然后通过HMM进行眼部状态识别。实验结果表明,该算法可快速有效地识别出驾驶员眼部状态。 相似文献
15.
在手写数字识别中,边界链码和环构成了对字符轮廓的完整描述。针对手写数字的特点,建了24种笔划。首先将样本边界链码转化成由24个笔划组成的特征值,再加上环特征,构成整个特征值。然后利用隐马尔可夫模型(HMM)对提取的特征值进行分类识别。首次将字符轮廓特征应用在基于HMM的手写数字识别中,在识别MNIST字库上,取得了92.2%的识别率。 相似文献
16.
Vitoantonio Bevilacqua Lucia Cariello Gaetano Carro Domenico Daleno Giuseppe Mastronardi 《Soft Computing - A Fusion of Foundations, Methodologies and Applications》2008,12(7):615-621
Face recognition from an image or video sequences is emerging as an active research area with numerous commercial and law
enforcement applications. In this paper different Pseudo 2-dimension Hidden Markov Models (HMMs) are introduced for a face
recognition showing performances reasonably fast for binary images. The proposed P2-D HMMs are made up of five levels of states,
one for each significant facial region in which the input frontal images are sequenced: forehead, eyes, nose, mouth and chin.
Each of P2-D HMMs has been trained by coefficients of an artificial neural network used to compress a bitmap image in order
to represent it with a number of coefficients that is smaller than the total number of pixels. All the P2-D HMMs, applied
to the input set consisting of the Olivetti Research Laboratory face database combined to others photos, have achieved good
rates of recognition and, in particular, the structure 3-6-6-6-3 has achieved a rate of recognition equal to 100%. 相似文献
17.
18.
19.
把基于序列模型的隐Markov模型引入文本分类领域。把待分类文本描述成一系列状态演化的隐Markov过程,其中状态以特定的概率产生代表文本的特征项。用序列模式来描述文本类,文本序列通过与隐Markov模型的匹配,求出其对应状态序列和最大输出概率。比较各个文本类的结果,达到文本分类的目的。最后通过和简单向量算法,KNN,Naive Bayes分类算法的比较,说明本算法的在文本分类中的成功应用。 相似文献
20.
在维吾尔文联机手写识别过程的训练阶段,单词被切分成字母,经过特征提取和聚类形成特征向量作为模型的输入。构造出以字符为基元的隐马尔可夫模型(HMM),将其嵌入到识别字典网络中。通过基于HMM的分类识别器,最终得到识别结果。首次将消除延迟笔画、建立有延迟笔画和无延迟笔画的字典的方法应用于维吾尔文手写识别中,取得了较高的识别率。 相似文献