首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work was to study the reaction of ozone and combined ozone/hydrogen peroxide on oxygenated additives such as methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE) in dilute aqueous solution using controlled experimental conditions. Experiments conducted in a semi-continuous reactor with MTBE and ETBE in combination (initial concentration: 2 mmol/L of each) showed that ETBE was better eliminated than MTBE with both ozone and combined O3/H2O2. Batch experiments led to the determination of the ratio of the kinetic constants for the reaction of OH°-radical with MTBE and ETBE [kOH°/ETBE/kOH°/MTBE = 1.7). Tert-butyl formate and tert-butyl acetate were identified as the ozonation byproducts of MTBE and ETBE, respectively, while tert-butyl alcohol was found to be produced during the ozonation of both compounds.  相似文献   

2.
Na8Nb6O19·13H2O particles were synthesized by a simple hydrothermal method. The catalysts were characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and thermogravimetric and differential scanning (TG-DSC). The XRD and TG-DSC analyses indicated that Na8Nb6O19·13H2O was an intermediate hexaniobate during the preparation of NaNbO3 powders. Methylene blue (MB) dye degradation using Na8Nb6O19·13H2O/H2O2, Nb2O5/H2O2 and NaNbO3/H2O2 systems were investigated, respectively. Among the catalytic oxidation systems, Na8Nb6O19· 13H2O showed the highest activity for degradation of MB in the presence of H2O2. The results indicated that the dye degradation efficiency could be 93.5% at 30 °C after 60 min in the presence of the Na8Nb6O19·13H2O/H2O2 system. It was also found that the degradation of MB over the catalytic systems followed pseudo-first-order kinetics, and the degradation rate was 0.02376 min−1 in the Na8Nb6O19·13H2O/H2O2 system, which was higher than that in the Nb2O5/H2O2 and NaNbO3/H2O2 systems. A possible mechanism for MB catalytic oxidation degradation using the Na8Nb6O19·13H2O/H2O2 system was proposed.  相似文献   

3.
The catalytic properties of granular activated carbon (GAC) in GAC/iron oxide/hydrogen peroxide (H2O2) system was investigated in this research. Batch experiments were carried out in de-ionized water at the desired concentrations of ethylene glycol and phenol. Rate constants for the degradation of hydrogen peroxide and the formation rate of iron species were determined and correlated with mineralization of ethylene glycol at various GAC concentrations. The observed first order degradation rate of hydrogen peroxide in the absence of iron oxide and organic matter increases linearity with the increasing of the GAC concentration. The decomposition rate of hydrogen peroxide was suppressed significantly as the solution pH became acidic or by reducing the surface area of the GAC. The reduction of the surface area was obtained by loading an organic compound (such as phenol) on the GAC or by using the oxidizing agent (H2O2). The addition of both chemicals, phenol and H2O2, affects mainly the surface area of the small pores, resulting in reducing the catalytic activity inside the micropores.The catalytic properties of the GAC were used to accelerate the formation rate of the ferrous ions, which is known in the literature to be the limiting rate reaction in the classic Fenton like reagent. It was shown that the ethylene glycol mineralization rate was increased by more than 50%.Finally, optimization of the GAC consumption leading to the fastest mineralization of the ethylene glycol, resulting in decreasing of the decomposition rate of H2O2 while enhancing the generation rate of ferrous ions.  相似文献   

4.
Four microporous materials, zeolites HZSM-5, Y, Beta and TS-1, were used as the supports to prepare supported gold catalysts using impregnation or deposition precipitation. The gold catalysts were tested in the direct synthesis of hydrogen peroxide from H2 and O2 and for CO oxidation. The effect on the catalytic activity of different metal (e.g., Pd, Pt, Cu, Ag, Rh or Ru) on the synthesis of hydrogen peroxide was also tested. Organic substrates, such as cyclohexane or cyclooctene, were introduced to investigate the possibility of in situ H2O2 oxidation with these catalysts.  相似文献   

5.
Nowadays, since the underground waters are known as the main source for supplying the drinking water, their pollution to the organic contaminants such as methyl tert-butyl ether (MTBE) is a very significant issue. Therefore, in this study, photocatalytic degradation of MTBE was investigated in the aqueous soloution of Fe-TiO2 nanoparticale under UV irradiation (wavelenght 254 nm) in a batch reactor. The Fe-TiO2 mixed oxides were prepared by sol–gel impregnation method. The samples were characterized by X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM) and BET specfic surface area. Then, the effect of various operational parameters namely pH, catalyst loading, molar ratio of [H2O2]0/[MTBE]0 and UV light intensity on degradation of aqueous MTBE were evaluated in a batch reactor. The optimal condition to achieve the best degradation for the initial concentration of 75 ppm MTBE was found at pH 7, catalyst concentration 2 g/L, molar ratio of [H2O2]0/[MTBE]0 4, and UV irradiation 24 W. Total degradation of MTBE with initial concentration of 75 ppm was reached in optimal condition after 70 min. In addition, investigations were also carried out to determine the appropriate kinetics of MTBE degradation using UV/Fe-TiO2/H2O2 process in optimal condition.  相似文献   

6.
Clay pillared with Fe-Al was synthesized as a catalyst for Fenton oxidation of phenol by hydrogen peroxide (H2O2). The pillaring process altered the basal space of clay, which is related to the amounts of aluminium and iron in the pillaring solution. The catalytic activity of the pillared clay was attributed to the accessible iron species, whose amount is regulated not only by the introduced iron species but also by the basal space that subsequently depends on the introduced aluminium species. The heterogeneous Fenton reaction exhibited an induction period followed by an apparent first order oxidation of phenol by H2O2. The induction period was proposed as an activation process of the surface iron species, which is thus enabled to complex with the reactants. The induction time (tI) depended on temperature (T) and pH condition but irrelevant to the concentrations of phenol and H2O2 and the amount of catalyst. The rate of the oxidation process was evaluated with respect to the concentrations of phenol and H2O2, the amount of catalyst, pH and temperatures. During the catalytic reaction the trend of iron leaching showed an ascending period and a descending period, which was related to the presence of ferrous ions and ferric ions. The Fe-Al pillared was recovered through two procedures, dry powder and slurry, which have different effect on the induction period.  相似文献   

7.
Formation of H2O2 from H2 and O2 and decomposition/hydrogenation of H2O2 have been studied in aqueous acidic medium over Pd/SiO2 catalyst in presence of different halide ions (viz. F, Cl and Br). The halide ions were introduced in the catalytic system via incorporating them in the catalyst or by adding into the reaction medium. The nature of the halide ions present in the catalytic system showed profound influence on the H2O2 formation selectivity in the H2 to H2O2 oxidation over the catalyst. The H2O2 destruction via catalytic decomposition and by hydrogenation (in presence of hydrogen) was also found to be strongly dependent upon the nature of the halide ions present in the catalytic system. Among the different halides, Br was found to selectivity promote the conversion of H2 to H2O2 by significantly reducing the H2O2 decomposition and hydrogenation over the catalyst. The other halides, on the other hand, showed a negative influence on the H2O2 formation by promoting the H2 combustion to water and/or by increasing the rate of decomposition/hydrogenation of H2O2 over the catalyst. An optimum concentration of Br ions in the reaction medium or in the catalyst was found to be crucial for obtaining the higher H2O2 yield in the direct synthesis.  相似文献   

8.
The destruction of methyl-tert-butyl ether (MTBE) in contaminated waters by O3/H202 process was studied and the influence background COD, alkalinity, and hydrogen peroxide and MTBE concentrations on process treatment efficiency and ozone dosage was investigated. The treatment efficiency was evaluated by an Efficiency Index, which is based on electrical energy requirement for ozone production. It was found that the treatment efficiency decreases linearly with increasing concentrations of MTBE at constant background COD and with background COD at constant MTBE concentration. A simplified kinetic scheme was presented to account for these observations.  相似文献   

9.
A number of Fe-containing ZSM-5 zeolites, such as HFeZSM-5 and HFeAlZSM-5 prepared by hydrothermal synthesis and Fe-modified ZSM-5 through solid-state ion-exchange, were adopted as methanol dehydration catalysts for syngas to dimethyl ether (STD) process. Their structures, acidic and basic properties were characterized by XRD, ESR, ICP-AES, TPD and FT-IR. Among these Fe-containing zeolites, the Fe-modified ZSM-5 displayed the highest dimethyl ether selectivity, least CO2 production. Some correlations between catalytic performance and acidity and basicity of Fe-containing ZSM-5 zeolite were discussed.  相似文献   

10.
Fenton-driven regeneration of spent granular activated carbon (GAC) can be used to regenerate organic contaminant-spent GAC. In this study, the effects of GAC particle size (>2 mm to <0.35 mm) and acid pre-treatment of GAC on Fenton-driven oxidation of methyl-tert-butyl ether (MTBE)-spent GAC were evaluated. Iron (Fe) was amended to the GAC using two methods: (1) untreated—where GAC was amended with a concentrated solution of ferrous sulfate and (2) acid pre-treatment—where GAC was amended with acid followed by sequential applications of a dilute ferrous sulfate solution. Subsequently, MTBE was amended to the GAC, followed by oxidative treatments with H2O2. H2O2 reaction and MTBE oxidation were inversely correlated with GAC particle size and were attributed to shorter intraparticle diffusion transport distances for both H2O2 and MTBE. Image analysis of the GAC cross-sections (i.e., prepared thin sections) revealed that the Fe amended to the GAC extended to the center of the GAC particles. Fe accumulated at higher levels on the periphery of the untreated GAC but Fe dispersal was more uniform in the acid pre-treated GAC. In the acid pre-treated GAC, conditions for MTBE oxidation were favorable and greater levels of MTBE oxidation were measured for all particle size fractions tested. Modeling and critical analysis of H2O2 diffusive transport and reaction indicated limited H2O2 penetration into large GAC particles which contributed to a decline in MTBE removal. Residual MTBE remaining on the GAC limited the quantity of MTBE that could be re-adsorbed, but no reduction in MTBE sorption capacity resulted from oxidative treatments.  相似文献   

11.
The photocatalytic degradation of methyl tert-butyl ether (MTBE) was investigated in the aqueous slurry of titanium dioxide (TiO2) particles irradiated with xenon lamp in a batch reactor, in the presence and absence of hydrogen peroxide. The reaction was found to follow a pseudo-first-order kinetics and the initial reaction rate constant increased by raising the TiO2 loading and reached an apparent optimum value at 0.5 g TiO2/L. The addition of small amounts of hydrogen peroxide to the TiO2 slurry, which is generally known to enhance the oxidation process in treating organic pollutants, decreased the initial MTBE degradation rate by as much as nearly 50%. However, this trend was reversed and reaction rate approached a plateau at higher concentration levels of hydrogen peroxide.  相似文献   

12.
Summary (C5H5)2Zr(O2C)CH3 and (C5H5)2Zr(O2C)CH2CH3 complexes were synthesized, characterized and activated with MAO for ethylene polymerization. The highest catalytic activity was achieved at Al/Zr molar ratio of 3000 for both systems. The effects of the size of the R group in the carboxylate ligands, the Al/Zr molar ratio and reaction temperature on the catalytic activity and polymer properties were studied and discussed.  相似文献   

13.
Four kinds of ZSM-5 zeolites with different SiO2/Al2O3 ratios are alkali-treated in 0.2 M NaOH solution for 300 min at 363 K. Changes to the compositions, morphologies, pore sizes, and distributions of the zeolites are compared before and after alkali-treatment. The changes observed are largely influenced by the SiO2/Al2O3 ratios with which the zeolites are synthesized. A possible mechanism of desilication during alkali-treatment is proposed. The SiO2/Al2O3 ratio of zeolites is found to influence the yield of light olefins that use heavy oil as feedstock. Alkali-treated ZSM-5 zeolites produce higher yields of light olefins compared to either untreated zeolites or the industry catalyst CEP-1. It is believed that alkali-treatment introduces mesopores to the zeolites and improves their catalytic cracking ability. ZSM-5 zeolites with SiO2/Al2O3 ratios of 50 also present superior selectivity toward light olefins because of their optimized hierarchical pores.  相似文献   

14.
The characteristics and influencing factors for dinitrotoluene degradation by nano-Fe3O4-H2O2 were studied, and the nano-scale Fe3O4 catalyst was prepared by the coprecipitation method, with dinitrotoluene wastewater as the degradation object. The results showed that the catalytic reaction system within the pH value range of 1 to 9 could effectively degrade dinitrotoluene, and the optimal pH value was 3; with the increase of catalyst dosage, the degradation efficiency and the catalytic reaction rate of dinitrotoluene grew as well. The optimal catalyst dosage was 1.0 g/L when the H2O2 dosage was within the range of 0 to 0.8 mL/L; the degradation efficiency and reaction rate grew with the increase of H2O2 dosage. With further increase of H2O2 dosage, degradation efficiency and reaction rate decreased; under the best conditions with the H2O2 dosage of 0.8 mL/L, the catalyst concentration of 1 g/L and the pH value of 3 at room temperature (25 °C), the degradation rate of the 100-mg/L dinitrotoluene in 120 min reached 97.6%. Through the use of the probe compounds n-butyl alcohol and benzoquinone, it was proved that the oxidation activity species in the nano-Fe3O4-H2O2 catalytic system were mainly hydroxyl radical (?OH) and superoxide radicals (HO2 ?), based on which, the reaction mechanism was hypothesized.  相似文献   

15.
An experimental study based on ferrioxalate-assisted solar photo-Fenton (SPFox) process shows how non-biodegradable azo dye Orange II (OII) solutions degradation can be enhanced or slowed down by continuous addition of hydrogen peroxide and air injection depending on operation conditions. The decoloration and mineralization of dye solution has been carried out in a solar Compound Parabolic Collector (CPC). An optimization study was done by using Multivariate Experimental Design including the following variables: flow rate of H2O2, air flow rate, pH and initial concentrations of Fe(II) and oxalic acid. The efficiency of photocatalytic degradation was determined from the analysis of color and Total Organic Carbon (TOC). Experimental data were fitted using neural networks (NNs) which allow the simulation of the process for any value of variables in the studied experimental range. The results reveal that the continuous addition of H2O2 improves the photocatalytic efficiency since the scavenger effect of peroxide is minimized. On the other hand, this system permits the use of a ferrous concentration below the discharge legal limit (2 ppm) being bubbling of air not necessary in that conditions. In addition, oxalic acid can be used to pH adjustment, reducing the operation costs of Fe removal, chemicals and electric power. Under the optimal conditions, 100% decoloration of dye solution can be reached by using both processes (SPFox with H2O2 addition at the beginning or along the reaction) but with different reaction rates. However, the efficiency of TOC removal was higher in the SPFox process with continuous addition of H2O2 (95% TOC removal in SPFox system with continuous addition of peroxide versus 80% TOC removal in SPFox system when peroxide is added at the beginning of the reaction). Molecular and/or radical reaction pathway was studied by conducting the reaction in the presence and absence of tert-butylalcohol.  相似文献   

16.
The catalytic performance of transition metal (Fe2+ or Cu2+) containing nano-sized hol low core mesoporous shell carbon (HCMSC) heterogeneous catalysts for the hydroxylation of phenol with hydrogen peroxide (H2O2) in water was investigated in a batch reactor. The metal-containing HCMSC catalyst showed higher activity than the same metal ion-exchanged zeolites. The nature of the metal and its content in the HCMSC had remarkable influence on the reaction results under the typical reaction conditions (PhOH/H2O2=3, reaction temperature=60 ‡C). Fe2+ containing HCMSC catalyst showed high catalytic activity with phenol conversion of 29%, selectivity to catechol (CAT) and hydroquinone (HQ) about 85%, H2O2 effective conversion about 70% and selectivity to benzoquinone (BQ) below 1% in the batch system.  相似文献   

17.
The decolorization and degradation of Rhodamine B (RB) were investigated using UV radiation in the presence of H2O2 in a batch photoreactor at different light intensities. H2O2 and UV light have a negligible effect when they were used on their own. Removal efficiency of RB was sensitive to the operational parameters such as initial concentrations of H2O2 and RB, initial pH and light intensity. The results indicated that efficiency of process decreased with addition of inorganic ions and alcohols to the dye solution as hydroxyl radical scavengers. The semilogarithmic graphs of the concentrations of RB versus time were linear, suggesting pseudo-first order reaction for decolorization and degradation processes. A simple kinetic model is proposed which confirms pseudo-first-order reaction. The electrical energy per order (EE/O) values for decolorization and degradation of RB solution were calculated. Results shows that applying an optimum hydrogen peroxide concentration can reduce the EE/O.  相似文献   

18.
The effects of activation pretreatments, Rh particle size and content of cerium oxide on Rh/??-Al2O3 catalysts for the oxidation of methyl tert-butyl ether (MTBE) were investigated. Three different conditions were used for the activation of the catalysts: (1) with air flow, (2) using a mixture of air and MTBE, and (3) by hydrogen reduction followed by oxidation with air. On Rh/??-Al2O3 catalyst the thermal pretreatments are of great importance for the MTBE oxidation. However, on Rh/??-Al2O3?CCe1 catalyst, the total combustion of MTBE was reached at a temperature of 200???C lower than that obtained with the Rh/??-Al2O3 catalyst at whatever thermal treatment applied. A Rho/Rh??+ and Ce3+/Ce4+ species were identified by XPS suggesting that they are the responsible of the high activity showed by the Rh/??-Al2O3?CCe1 catalyst. A particle size effect for MTBE oxidation was observed on Rh/??-Al2O3 catalysts, large Rh particles are more active than the small ones.  相似文献   

19.
The aim of this work is to establish the influence of different ultrasonic frequencies ranging from 20 to 1142 kHz on the efficiency of the US/Fe2O3/SBA-15/H2O2 (sono-Fenton) system. The frequency of 584 kHz has been established as the optimum ultrasonic irradiation for the degradation of aqueous phenol solutions by the sono-Fenton system and the effect of different variables, such as hydrogen peroxide concentration or catalyst loadings in the reaction was studied by factorial design of experiments. Catalyst loadings of 0.6 g/L and hydrogen peroxide concentration, close to the stoichiometric amount, show high organic mineralization, accompanied by excellent catalyst stability in a wide range of concentrations of aqueous phenol solutions (0.625–10 mM). Additionally, the catalyst can be easily recovered by filtration for reuse in subsequent reactions without appreciable loss of activity. The coupling of US (584 kHz)/Fe–SBA-15/H2O2 at room temperature is revealed as a promising technique for wastewater treatment. Additionally, a new sono-Fenton variant, the so-called latent remediation has also been studied, using ultrasonic irradiation only as pretreatment for 15 min in an attempt at reducing the cost of the degradation process. It has been observed that latent remediation provides TOC degradation of around 21% after 15 min sonication followed by 6 h silent reaction while the typical sono-Fenton reaction affords 29% TOC reduction after 6 h sonication.  相似文献   

20.
BACKGROUND: Over the past several decades methyl tert‐butyl ether (MTBE) as additive to gasoline, intended to either boost ratings of fuel or to reduce air pollution, has been accepted worldwide. Since MTBE has high water solubility, the occurrence of fuel spills or leaks from underground storage tanks or transferring pipeline has led to the contamination of natural waters. In this study the degradation of aqueous MTBE at relatively high concentrations was investigated by a UV‐visible/ZnO/H2O2 photocatalytic process. The effects of important operational parameters such as pH, amount of H2O2, catalyst loading and irradiation time were also investigated. Concentration of MTBE and intermediates such as tert‐butyl formate and tert‐butyl alcohol were measured. RESULTS: Time required for complete degradation increased from 20 to 150 min when the initial concentration was increased from 10 to 500 mg L?1. The first‐order rate constants for degradation of MTBE were estimated to be 0.183–0.022 min?1 as the concentration increased from 10 to 500 mg L?1. Study of the overall mineralization monitored by total organic carbon analysis showed that at an initial concentration of 100 mg L?1 MTBE complete mineralization was obtained after 100 min under UV‐visible/ZnO/H2O2 photocatalysis. CONCLUSION: The data presented in this paper clearly indicated that UV‐visible/ZnO/O2 as an advanced oxidation process provides an efficient treatment alternative for the remediation of MTBE‐contaminated waters. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号