首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fumed‐silica‐filled polydimethylsiloxane (PDMS)–polyamide (PA) composite membranes were prepared by the introduction of hydrophobic fumed silica into a PDMS skin layer. The cross‐sectional morphology of these filled composite membranes was observed with scanning electron microscopy. Their pervaporation performances were tested with aqueous ethanol solutions at 30, 35, and 40°C. Increasing the amount of the fumed silica resulted in significantly enhanced ethanol permeability of the membranes. When the content of the fumed silica in the PDMS skin layer was 20 wt %, the ethanol permeability increased to nearly twice that of the unfilled PDMS–PA composite membrane. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
The influence of diisocyanate and diol compounds of polyurethane and crosslinking agent on the separation of phenol aqueous solution by pervaporation was investigated. Polyurethanes were prepared by polyaddition of diisocyanate and diol compounds and trimethylolpropane (TMP) using dibutyltindilaulate as a catalyst. The polyurethane membrane was prepared by a casting method and was sandwiched with a porous polypropylene membrane (Celgard® 2500). Pervaporation measurement was carried out under vacuum on the permeate side, and the permeant was collected with a liquid nitrogen trap. Little influence of diisocyanate compounds on the phenol permselectivity through diisocyanate–polytetramethyleneglycol [PTMG(1000)] membranes was observed since the influence on the solubility and the diffusivity was small. The phenol permselectivity was increased with an increase in the molecular weight of PTMG and polycaprolactone diol (PCL) for the 1,6‐diisocyanato hexane (HMDI)–PTMG and HMDI–PCL membranes. It was considered that the increase in phenol diffusivity can be attributed to an increase in phenol selectivity. The permeability and selectivity of HMDI–[PTMG(2900)–TMP] membrane was relatively constant below the 2% TMP content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 439–448, 1999  相似文献   

3.
Polyimide–polyaniline nanocomposites were obtained by mixing poly{[4,4′‐bis(4″‐N‐phenoxy)diphenylsulfone]imide‐1,3‐bis(3,4‐dicarboxyphenoxy)benzene} (PI) and polyaniline (PANI) solutions in N‐methylpyrrolidone. These solutions were used for the preparation of homogeneous and composite membranes. Uniform distribution of PANI particles in the membranes, resulted from interactions between macromolecules, was confirmed by transmission electron microscopy. Membranes based on PI and PI–PANI were tested in pervaporation of binary organic mixtures: methanol/toluene and methanol/cyclohexane and showed a remarkable selectivity with respect to methanol. In both pervaporation processes, selectivity was improved in PANI‐containing membranes. Interactions between membrane polymers and liquid penetrants (methanol, toluene, and cyclohexane) were studied by measurements of surface tension, sorption, and pervaporation parameters. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Blends of linear low density polyethylene (LLDPE) and LLDPE grafted maleic anhydride (LLDPE‐g‐MA) were prepared by melt mixing. The surface of cast films with different contents and types of maleated PE were characterized through contact angle and wetting tension measurements, as well as attenuated total reflection IR spectroscopy. The tensile properties and light transmission of extruded films, as well as the performance of these films compared with commercial “antifog” films, for greenhouses were determined. The carbonyl polar groups on the surface of LLDPE/LLDPE‐g‐MA blends increased, and the equilibrium contact angles of water and dimethylformamide decreased when the content of maleated PE increased. Films made with these blends showed a noticeable reduction in water drop formation as the MA content was increased and when using LLDPE‐g‐MA of lower molecular weight. The light transmission through these films under condensation was improved when using increased contents of MA, which promotes better wetting of the water on the surface. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1802–1808, 2001  相似文献   

5.
Crosslinked blended membranes of poly(vinyl alcohol) (PVA) and N-methylol nylon-6 were prepared either by thermal crosslinking at 180°C or by chemical crosslinking with maleic acid. The pervaporation performance for the separation of ethanol–water mixtures of these membranes was investigated in terms of feed concentration, PVA content, and crosslinking agent content. The pervaporation performance of two differently crosslinked membranes was strongly influenced by the nature of the crosslinkage. Significant improvement in the pervaporation separation index can be achieved for chemically crosslinked membranes. From the comparison between the pervaporation and sorption tests, it is suggested that, for hydrophilic membranes, sorption properties dominate the pervaporation performance at feed solutions of higher water content, while diffusion properties govern at feed solutions of higher ethanol content. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 317–327, 1998  相似文献   

6.
A new type of composite membrane for pervaporation has been developed. These membranes were prepared by free‐radical copolymerization of acrylic acid with a macromolecular polyfunctional crosslinker (allylhydroxyethylcellulose) inside the porous polyethylene (PE) film. It was shown that the porous structure of the PE matrix is filled with poly(acrylic acid) (PAA), and a layer of acid is formed on the film surface. To investigate the effect of the porous matrix on the composite membrane properties, a hydrogel membrane of crosslinked PAA was also prepared without the matrix using the same procedure. PAA in both membranes was in the neutralized form (K+). Swelling behavior of the membranes and their separation characteristics for pervaporation were investigated in water–ethanol solutions depending on the ethanol concentration. All membranes exhibited a high degree of equilibrium swelling (Q = 20–50 g/g) in dilute ethanol solutions (0–30 vol %), and Q sharply dropped to 1.5–2 g/g at a EtOH concentration of 30–40 vol % due to collapse of the gel. All membranes under study were highly permeable and selective to water over a wide range of ethanol concentrations in the feed (50–96 vol %), but composite membranes had a higher separation factor due to the restriction effect of the matrix porous structure on swelling of PAA(K+) inside the pores. However, composite membranes were characterized by a lower permeation rate, compared to the crosslinked PAA membranes without a matrix, because of their lower effective surface for diffusion. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1461–1465, 2004  相似文献   

7.
Hydroxy‐terminated polybutadiene‐based porous and nonporous polyurethaneurea membranes were prepared and used to study the phenol separation efficiency from dilute aqueous solution. The porosity was developed by incorporation of lithium chloride in polymer matrix with subsequent leaching of the same in hot water. The porous membrane showed higher phenol flux over that of nonporous membrane. Permeate containing about 97 wt % phenol was obtained from feed containing 7 wt % phenol, when pervaporation was carried out with porous polyurethaneurea membrane at 75°C. The activation energies for diffusion, permeation, and pervaporation were calculated from Arrhenius plots. From the activation energy values, it was observed that the pervaporation process became easier with increased phenol concentration in the feed and porosity of the membrane used. The membrane boundary resistance was observed to decrease with increase in temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1857–1865, 2006  相似文献   

8.
This study dealt with the separation of binary water–phenol and water–methanol mixtures and ternary water–phenol–methanol mixtures by pervaporation (PV) with polydimethylsiloxane (PDMS) membranes. The effects of the operating conditions (feed temperature, feed concentration, and feed flow rate) on the separation performance for binary mixtures were investigated. An increase in temperature or concentration increased the total permeation flux and decreased the organic separation factor. In other words, an increase in the temperature or feed organic concentration increased the water flux more significantly than the organic compound flux, which resulted in a separation factor reduction. Also, an increase in the feed flow rate increased the total flux and separation factor because the boundary layer effects diminished. The vapor–liquid equilibrium separation factor (αVLE) and pervaporation separation factor (αPV) values for the PDMS membrane were calculated, and this showed that αPV for the water–phenol mixture was greater than αVLE. This means that the membrane was highly efficient for the PV separation of phenol from dilute aqueous solutions relative to the separation of methanol. This was due to the fact that phenol has a higher solubility parameter than methanol in silicone membranes. To study the effect of a third component on membrane performance, PV experiments were also carried out with water–phenol–methanol mixtures. The results for total permeation flux and the phenol separation factor for PDMS membranes in contact with water–phenol–methanol ternary mixtures are similar to those in contact with water–phenol binary mixtures. The phenol separation factor of the membrane in contact with the ternary mixture was slightly lower than that in contact with the binary mixture. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Hydrophobic composite membranes with a crosslinked poly(dimethylsiloxane)‐poly(methyl hydrogen siloxane) selective layer were prepared by using a new laboratory made catalyst agent. The pervaporation separation of five organic solvent–water mixtures was carried out with these composite membranes, together with swelling experiments in the same feed mixtures. The volatile organic compounds employed were ethanol, methanol, 1‐butanol, acetone, and ethyl acetate. The pervaporation and swelling experiments revealed that both the 1‐butanol and the ethyl acetate solutions showed the highest affinity for the composite membrane. When these components were employed as feed solutions, the membranes showed both high selectivity and high permeation. Mechanical–dynamical experiments of swollen and nonswollen composite membranes were also performed. The relaxation spectra were analyzed in terms of the interaction of the components of the different mixtures with the composite membrane, and the free volume corresponding to the each sample was obtained. Once the membranes had reached an equilibrium swelling, a decrease in the free volume was observed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 546–556, 2001  相似文献   

10.
The pervaporation performance of cellulose acetate (CA) membranes prepared from acetone (AC), acetone/tetrahydrofuran (AC/THF), acetone/chloroform (AC/CF), and acetone/cyclohexane (AC/CYH) was studied for separating MeOH/MTBE (methyl tert‐butyl ether) mixture with 5 (wt) % MeOH. The dilute‐solution properties and Huggins constant (KH) of CA dissolved in AC and AC/solvent mixtures with 15 vol % of the second solvent (tetrahydrofuran, chloroform, or cyclohexane) were examined. J and α of the CA membranes were affected by the types of solvent mixtures used to prepare the casting solutions. Under the same conditions, the membrane with AC/CYH had the highest J value and the lowest α value, and it was followed by the membranes with AC/CF, AC/THF, and AC. The increasing value of J and decreasing value of α for the CA membranes from different solvent mixtures were in good agreement with the increasing value of KH of CA in corresponding solvent mixtures. Furthermore, differences in the morphology from scanning electron microscopy images of the cross sections or from atomic force microscopy photographs of the surfaces of the membranes existed, and they provided proof of the different pervaporation performances of the CA membranes prepared from AC and AC/solvent mixtures. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97:1891–1898, 2005  相似文献   

11.
Porous Nylon 6 nanofibers were prepared using silica nanoparticles as the template. Firstly, Nylon 6/silica composite nanofibers were prepared as precursors by electrospinning Nylon 6 solutions containing different contents of silica nanoparticles. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the surface morphology and the inner structure of composite nanofibers; where it was found that silica nanoparticles were distributed both inside and on the surface of nanofibers. Analytical techniques [Fourier transform infrared (FTIR), differential scanning calorimetry, thermal gravimetric analysis (TGA), and wide‐angle X‐ray diffraction) were used to study the structure and properties of these composite nanofibers. The glass transition, melting, and crystallization processes of the fibers were affected by the addition of silica nanoparticles. Secondly, porous Nylon 6 nanofibers were obtained by removing silica nanoparticles via hydrofluoric acid treatment. The removal of silica nanoparticles was confirmed using FTIR and TGA tests. SEM and TEM observations revealed the formation of the porous structure in these nanofibers. After the formation of the porous structure, Brunauer–Emmett–Teller specific surface areas of nanofibers were increased as compared to solid Nylon 6 and composite nanofibers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Polyacrylonitrile (PAN) supports useful for the formation of nanofiltration (NF) composite membranes were prepared from PAN solutions in N‐methylpyrrolidone (NMP), using a phase‐inversion method. The compositions of the PAN/NMP solutions used were as follows: 10/90, 15/85, and 20/80 (in wt %). The PAN supports were treated with various concentrations of NaOH aqueous solutions (0.1, 0.5, 1, and 2 mol) for certain periods of times (0.5, 1, 2, and 3 h) in order to modify their surface chemically and morphologically. The characteristics of the supports, modified or unmodified, were carefully studied. The morphology of those were observed with field‐emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The change of the chemical structure of those by the NaOH treatment was studied using FTIR–ATR spectroscopy and ESCA. The permeation properties of those were also determined at 1–5 bar of operation pressure using a PEG 35,000 aqueous feed solution. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1854–1862, 2001  相似文献   

13.
To study the effect of the silica content on the properties of the salt‐free and salt‐added hybrids based on poly(ethylene oxide) (PEO) and silica, two series of hybrids, PEO–silica and PEO–silica–LiClO4 (O:Li, 9:1) hybrids were prepared via the in situ acid‐catalyzed sol–gel reactions of the precursors [i.e., PEO functionalized with triethoxysilane and tetraethyl orthosilicate (TEOS)]. The morphology of the hybrids was examined by scanning electron microscopy (SEM) of the fracture surfaces of the hybrid. The results indicated that the discontinuity develops with increasing the weight percent of silica in both hybrids. The differential scanning calorimetric (DSC) analysis indicated that effects of silica content on the glass transition temperatures (Tg) of the PEO phase were different in salt‐free and salt‐added hybrids. The Tg of PEO phase increased with increasing weight percent of silica in salt‐free hybrids, whereas the curve of Tg of PEO phase and silica content had a maximum at 35 wt % of silica content in salt‐added hybrids. For both salt‐free and salt‐added hybrids, peaks of the loss tangent, determined by dynamic mechanical analysis (DMA) were gradually broadened and lowered with increasing weight percent of silica. The storage modulus, E′, in the region above Tg increases with increasing silica content for both PEO–silica and PEO–silica–LiClO4 hybrids. In the conductivity and composition curves for PEO–silica–LiClO4 hybrids, the conductivity shows a maximum value of 3.7 × 10?6 S/cm, corresponding to the sample with a 35 wt % of silica. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2471–2479, 2001  相似文献   

14.
b‐oriented silicalite‐1 membranes on porous silica supports were synthesized using gel‐free secondary growth. The porous silica supports were made by pressing crushed quartz fibers followed by sintering and polishing, and further modified by slip‐coating three layers of Stöber silica particles (1000, 350, and 50 nm). The b‐oriented seed layers were prepared by rubbing silicalite‐1 particles (2 μm × 0.8 μm × 3 μm along a‐, b‐, and c‐axis, respectively) after depositing a polymeric layer on the support. After silicalite‐1 seed deposition, a final coating of spherical silica particles was applied. Well‐intergrown, μm‐thick, b‐oriented membranes were obtained, which, after calcination, exhibited ethanol permselectivity in ethanol/water mixture pervaporation. At 60°C and for ~5 wt % ethanol/water mixtures, the best membrane exhibited overall pervaporation separation factor of 85 (corresponding to membrane intrinsic selectivity of 7.7) and total flux of 2.1 kg/(m2·h). This performance is comparable to the best performing MFI membranes reported in the literature. © 2015 American Institute of Chemical Engineers AIChE J, 62: 556–563, 2016  相似文献   

15.
A polydimethylsiloxane-α,ω-diol with molar mass Mn = 43,000 has been synthesized by cationic polymerization of octamethylcyclotetrasiloxane and reinforced with silica. Two pathways were used for incorporation of silica in the polymeric matrix: ex situ by mechanical blending of a pretreated fumed silica and in situ by adding tetraethyl-orthosilicate (TEOS) as silica precursor in the polymer matrix followed by their hydrolysis and condensation (sol–gel technique). The procedure occurred in the absence of solvent. Composites with different contents of silica were prepared and investigated by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The results were compared to those obtained on a model network based on the same polysiloxane without silica. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

16.
Heterogeneous metallocene catalysts were prepared by incipient wetness impregnation of AlSBA‐15 (Si/Al = 4.8, 15, 30, 60, and ∞) mesostructured materials with (nBuCp)2ZrCl2/MAO. For comparative purposes commercial silica and silica–alumina (Si/Al = 4.8) supports were also impregnated with the MAO/metallocene catalytic system. A combination of X‐ray powder diffraction, nitrogen adsorption–desorption isotherms at 77 K, transmission electron microscopy, ICP‐atomic emission spectroscopy, and UV–vis spectroscopic data, were used to characterize the supports and the heterogeneous catalysts. Ethylene polymerizations were carried out in a schlenk tube at 70 °C and 1.2 bar of ethylene pressure. The polyethylene obtained was characterized by GPC, DSC, and SEM. Catalysts prepared with mesostructured SBA‐15 supports exhibited better catalytic performance than those supported on amorphous silica and silica–alumina. In general, higher ethylene polymerization activity was achieved if (nBuCp)2 ZrCl2/MAO catalytic system was heterogenized using supports with lower pore size in the range of the mesopores and lower Si/Al ratio. All catalysts produced high‐density polyethylene, with high crystallinity values and fibrous morphology when SBA‐15 mesostructured materials were used as supports. POLYM. ENG SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

17.
The separation of a phenol-water mixture using a polyurethane membrane by a pervaporation method was investigated. Polyurethane was selected as a membrane material because its affinity for phenol was considered to be high. Polyurethane was prepared by the polyaddition of 1,6-diisocyanatohexane and polytetramethyleneglycol. The polyurethane layer was sandwiched with a porous polypropylene membrane (Celgard® 2500). Pervaporation measurement was carried out under vacuum on the permeate side, and the permeate vapor was collected with a liquid nitrogen trap. The phenol concentration in the permeate solution increased from 0 to 65 wt % with increasing feed concentration of phenol from 0 to 7 wt %. The total flux also increased up to 930 g m-2 h-1 with increasing phenol partial flux. In the sorption measurement at 60°C, the concentration of phenol in the membrane was 68 wt %, which was higher than that of the permeate solution. Therefore, it was considered that the phenol selectivity was based on high solubility in the polyurethane membranes. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:469–479, 1997  相似文献   

18.
A silica‐sphere–poly(catechol hexamethylenediamine) (PCHA–SiO2) composite was prepared via the one‐step facile polymerization of catechol and hexamethylenediamine; this method uses a silica sphere as a hard template. The chemical structures and morphologies of this composite were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. The adsorption experiments indicated that the PCHA–SiO2 composite served as a very attractive adsorbent for Pb(II)‐, Cu(II)‐, and Cd(II)‐ion removal at lower concentrations and had very good selective adsorption abilities for Pb(II) and Cu(II) ions in a solution contaminated with these three ions at higher concentrations. These interesting results may have been due to the reversible H+ adsorption–desorption properties of the characteristic phenol amine structure of the PCHA–SiO2 composite. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45839.  相似文献   

19.
By blending a rigid polymer, sodium alginate (SA), and a flexible polymer, poly(vinyl alcohol) (PVA), SA/PVA blend membranes were prepared for the pervaporation separation of ethanol–water mixtures. The rigid SA membrane showed a serious decline in flux and a increase in separation factor due to the relaxation of polymeric chains, whereas the flexible PVA membrane kept consistent membrane performance during pervaporation. Compared with the nascent SA membrane, all of the blend membranes prepared could have an enhanced membrane mobility by which the relaxation during pervaporation operation could be reduced. From the pervaporation separation of the ethanol–water mixtures along with the temperature range of 50–80°C, the effects of operating temperature and PVA content in membrane were investigated on membrane performance, as well as the extent of the relaxation. The morphology of the blend membrane was observed with PVA content by a scanning electron microscopy. The relaxational phenomena during pervaporation were also elucidated through an analysis on experimental data of membrane performance measured by repeating the operation in the given temperature range. SA/PVA blend membrane with 10 wt % of PVA content was crosslinked with glutaraldehyde to enhance membrane stability in water, and the result of pervaporation separation of an ethanol–water mixture through the membrane was discussed. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:949–959, 1998  相似文献   

20.
The new porous carbon materials were obtained by templating procedure using mesoporous silica (SBA-15) as template. The ordered mesoporous silica materials were synthesized by using Pluronic P123 (non-ionic triblock copolymer, EO20PO70O20). SBA-15/cryogel carbon composites were obtained by sol–gel polycondenzation of resorcinol and formaldehyde in the presence of different amount of SBA-15. The polycondenzation was followed by freeze drying and subsequent pyrolysis. One set of SBA-15/sucrose carbon composites was prepared by using sucrose as carbon source. The silica template was eliminated by dissolving in hydrofluoric acid (HF) to recover the carbon material. The obtained carbon replicas were characterized by nitrogen adsorption–desorption measurements, X-ray diffraction and scanning electron microscopy (SEM). It was revealed that the samples have high specific surface (533–771 m2 g?1), developed meso- and micro-porosity and amorphous structure. Porous structure of carbon replicas was found to be a function of the carbon source, properties of SBA-15 and silica/carbon ratio. Room temperature adsorption of nitrogen and adsorption of phenol from aqueous solutions were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号