首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The nanostructure, morphology, and thermal properties of polyamide 6 (PA6)/clay nanocomposites were studied with X‐ray scattering, differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The wide‐angle X‐ray diffraction (WAXD) and TEM results indicate that the nanoclay platelets were exfoliated throughout the PA6 matrix. The crystallization behavior of PA6 was significantly influenced by the addition of clay to the polymer matrix. A clay‐induced crystal transformation from the α phase to the γ phase for PA6 was confirmed by WAXD and DSC; that is, the formation of γ‐form crystals was strongly enhanced by the presence of clay. With various clay concentrations, the degree of crystallinity and crystalline morphology (e.g., spherulite size, lamellar thickness, and long period) of PA6 and the nanocomposites changed dramatically, as evidenced by TEM and small‐angle X‐ray scattering results. The thermal behavior of the nanocomposites was investigated with DSC and compared with that of neat PA6. The possible origins of a new clay‐induced endothermic peak at high temperature are discussed, and a model is proposed to explain the complex melting behavior of the PA6/clay nanocomposites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1191–1199, 2007  相似文献   

2.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organophilic montmorillonite (OMMT) were prepared by melt compounding. The sodium montmorillonite (Na‐MMT) was modified using three different types of alkyl ammonium salts, namely dodecylamine, 12‐aminolauric acid, and stearylamine. The effect of clay modification on the morphological and mechanical properties of PA6/PP nanocomposites was investigated using x‐ray diffraction (XRD), transmission electron microscopy (TEM), tensile, flexural, and impact tests. The thermal properties of PA6/PP nanocomposites were characterized using thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and heat distortion temperature (HDT). XRD and TEM results indicated the formation of exfoliated structure for the PA6/PP nanocomposites prepared using stearylamine modified montmorillonite. On the other hand, a mixture of intercalated and exfoliated structures was found for the PA6/PP nanocomposites prepared using 12‐aminolauric acid and dodecylamine modified montmorillonite. Incorporation of OMMT increased the stiffness but decreased the ductility and toughness of PA6/PP blend. The PA6/PP nanocomposite containing stearylamine modified montmorillonite showed the highest tensile, flexural, and thermal properties among all nanocomposites. This could be attributed to better exfoliated structure in the PA6/PP nanocomposite containing stearylamine modified montmorillonite. The storage modulus and HDT of PA6/PP blend were increased significantly with the incorporation of both Na‐MMT and OMMT. The highest value in both storage modulus and HDT was found in the PA6/PP nanocomposite containing stearylamine modified montmorillonite due to its better exfoliated structure. POLYM. COMPOS., 31:1156–1167, 2010. © 2009 Society of Plastics Engineers  相似文献   

3.
Polyamide 6/polypropylene (PA6/PP=70/30 parts) blends containing 4 phr (parts per hundred resin) of organophilic modified montmorillonite (organoclay) were prepared using twin screw extruder followed by injection molding. Maleated polypropylene (MAH-g-PP) was used to compatibilize the blend system. The mechanical properties of PA6/PP nanocomposites were studied through tensile and flexural tests. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to assess the fracture surface morphology and the dispersion of the organoclay, respectively. X-ray diffraction (XRD) was used to characterize the formation of nanocomposites. The thermal properties were characterized by using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The dynamic mechanical properties of PA6/PP nanocomposites were analyzed by using dynamic mechanical thermal analyzer (DMTA). The strength and stiffness of PA6/PP nanocomposites were improved significantly in the presence of MAH-g-PP. This has been attributed to the synergistic effect of organoclay and MAH-g-PP. The MAH-g-PP compatibilized PA6/PP nanocomposites showed a homogeneous morphology supporting the compatibility improvement between PA6, PP and organoclay. TEM and XRD results revealed the formation of nanocomposites as the organoclay was intercalated and exfoliated. A possible chemical interaction between PA6, PP, organophilic modified montmorillonite and MAH-g-PP was proposed based on the experimental work.  相似文献   

4.
H.S. JeonG. Kim  D.H. Weinkauf 《Polymer》2003,44(19):5749-5758
The effects of clay dispersion and the interactions between clays and polymer chains on the viscoelastic properties of polymer/clay nanocomposites are investigated using oscillatory shear rheology, X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). Four different montmorillonite silicates of natural clays, plasma-treated clays, and organically modified clays (OCs) have been used in this study. For the polyisoprene (PI)/clay nanocomposites, the exfoliation of the OC dispersed in the PI matrix is confirmed with XRD and SAXS although TEM images show both exfoliated and non-exfoliated nanoclay sheets. In contrast aggregation or intercalation is obtained for the other PI/clay composites studied here. Additionally, the effective maximum volume packing fraction of OC for the exfoliated nanocomposites is determined from the overlapping of dynamic viscosity at low frequency regime, in which the effective maximum volume packing fraction is larger than the percolation threshold determined from the storage modulus of the nanocomposites.  相似文献   

5.
Polyamide 6/clay nanocomposites (PA6CN) were prepared via the melt compounding method by using a new kind of organophilic clay, which was obtained through cointercalation of epoxy resin and quaternary ammonium into Na‐montmorillonite. The dispersion effect of this kind of organophilic clay in the matrix was studied by means of X‐ray diffraction (XRD) and transmission electron microscopy (TEM); the silicate layers were dispersed homogeneously and nearly exfoliated in the matrix. This was probably the result of the strong interaction between epoxy groups and amide end groups of PA6. The mechanical properties and heat distortion temperature (HDT) of PA6CN increased dramatically. The notched Izod impact strength of PA6CN was 80% higher than that of PA6 when the clay loading was 5 wt %. Even at 10 wt % clay content, the impact strength was still higher than that of PA6. The finely dispersed silicate layers and the strong interaction between silicate layers and matrix decreased the water absorption. At 10 wt % clay content, PA6CN only absorbs half the amount of water compared with PA6. The dynamic mechanical properties of PA6CN were also studied. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 953–958, 2003  相似文献   

6.
梁玉蓉  谭英杰 《化工学报》2008,59(6):1571-1577
采用熔体插层法制备聚丙烯(PP)/有机黏土(OMMT)纳米复合材料。XRD和TEM的测试结果表明,采用熔体插层法制备的PP/OMMT复合材料是剥离型纳米复合材料。力学性能实验结果表明,相容剂的加入提高了PP与OMMT之间的相互作用,使其各项力学性能都得到了提高;PP/OMMT纳米复合材料的各项力学性能在有机黏土含量较小的情况下,就可以有较大幅度的提高;与纯PP相比,相容剂含量为10 phr、有机黏土用量为1 phr的聚丙烯基纳米复合材料具有最好的各项力学性能。  相似文献   

7.
Both polyamide 12 (PA 12)/clay and polyamide 6–polyamide 66 copolymer (PA 6/6,6)/clay nanocomposites were prepared by melt intercalation. The incorporation of 4–5 wt % modified clay largely increased the strength, modulus, heat distortion temperature (HDT), and permeation resistance to methanol of the polyamides but decreased the notched impact strength. Incorporation of the clay decreased the melt viscosities of both the PA 12 and PA 6/6,6 nanocomposites. Incorporation of the clay increased the crystallinity of PA 6/6,6 but had little effect on that of PA 12, which explained why the clay obviously increased the glass‐transition temperature of PA 6/6,6 but hardly had any effect on that of PA 12. The dispersion and orientation of both the clay and the polyamide crystals were studied with transmission electron microscopy, scanning electronic microscopy, and X‐ray diffraction. The clay was exfoliated into single layers in the nanocomposites, and the exfoliated clay layers had a preferred orientation parallel to the melt flow direction. Lamellar crystals but not spherulites were initiated on the exfoliated clay surfaces, which were much more compact and orderly than spherulites, and had the same orientation with that of the clay layers. The increase in the mechanical properties, HDT, and permeation resistance was attributed to the orientated exfoliated clay layers and the lamellar crystals. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4782–4794, 2006  相似文献   

8.
In this study, acrylonitrile–butadiene–styrene (ABS) and polyamide‐6 (PA6) were blended in the presence of an olefin‐based compatibilizer and organoclays. The effects of ABS to PA6 ratio, clay content, and screw speed of the microcompounder were examined by performing morphological (i.e., XRD, SEM, and TEM) and tensile tests. The average aspect ratio of the clay platelets after processing was obtained by applying semiautomatic image analysis method. SEM analysis showed that addition of the compatibilizers to the ABS/PA6 blend system resulted in a decrease in diameter of dispersed phase when one of the phases was continuous. The addition of 5 wt% compatibilizer altered the dispersed morphology to cocontinuous morphology when the weight percentage of ABS was equal to that of PA6. The results of XRD analysis implied that clays were exfoliated in the presence of PA6. It was observed in TEM micrographs that clays were selectively dispersed in PA6 phase. Aspect ratio of the platelets increased as the PA6 content increased. Moduli of the nanocomposites were improved by enriching blend with PA6 and increasing screw speed. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

9.
A new approach toward the development and application of a high-throughput method for nanocomposites was proposed. Polystyrene clay nanocomposites were prepared, using different imidazolium modified montmorillonite clays as nanoadditives. The preparation was carried out utilizing the parallel synthesizer as a high-throughput technique. The effects of solvent, temperature, and type of compatibilizer on the final products were investigated. The final products were analyzed by means of thermogravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Polystyrene-dimethyl decylimidazolium-montmorillonite (PS/DMDIM-MMT) and polystyrene-dimethyl hexadecyl imidazolium-montmorillonite (PS/DMHDIM-MMT) nanocomposites were obtained, using chlorobenzene as a solvent at 150°C. The XRD and TEM data were employed to measure the degree of clay exfoliation in the fabricated samples. The results indicate that PS/DMDIM-MMT nanocomposite has an intercalated structure, whereas the PS/DMHDIM-MMT nanocomposite has an exfoliated structure.  相似文献   

10.
In this study, nanocomposites based on polyamide 6/carboxylated acrylonitrile butadiene rubber (PA6/XNBR) reinforced by the clay montmorillonite (OMMT) (Cloisite 20A and Cloisite 30B) were prepared by melt mixing. Glycidyl methacrylate-grafted XNBR (XNBR-g-GMA) compatibilizer was used for immiscible blends of PA6/XNBR. The results illustrated that OMMT wanted to be selectively present in the more hydrophilic PA6 phase. Also, by adding the XNBR-g-GMA compatibilizer and increasing OMMT content, tensile strength, rheological and dynamic mechanical properties of the nanocomposites improved. According to transmission electron microscopy (TEM) images, a few layers of OMMT (Cloisite 20A) in the XNBR-g-GMA compatibilizer phase was observed. The results of X-ray diffractometry and TEM analyses demonstrated that the formation of intercalated or exfoliated structures for both types of OMMT nanocomposites. In end of all analysis was found PA6/XNBR reinforced by the Cloisite 30B could be substantially improved by adding XNBR-g-GMA as a compatibilizer when compared to those reinforced by Cloisite 20A.  相似文献   

11.
A new kind of organophilic clay, cotreated by methyl tallow bis‐2‐hydroxyethyl quaternary ammonium and epoxy resin into sodium montmorillonite (to form a strong interaction with polyamide 66 matrix), was prepared and used in preparing PA66/clay nanocomposites (PA66CN) via melt‐compounding method. Three different types of organic clays, CL30B–E00, CL30B–E12, and CL30B–E23, were used to study the effect of epoxy resin in PA66CN. The morphological, mechanical, and thermal properties have been studied using X‐ray diffraction, transmission electron microscopy (TEM), mechanical, and thermal analysis, respectively. TEM analysis of the nanocomposites shows that most of the silicate layers were exfoliated to individual layers and to some thin stacks containing a few layers. PA66CX–E00 and PA66CX–E12 had nearly exfoliated structures in agreement with the SAXS results, while PA66CX–E23 shows a coexistence of intercalated and exfoliated structures. The storage modulus of PA66 nanocomposites was higher than that of the neat PA66 in the whole range of tested temperature. On the other hand, the magnitude of the loss tangent peak in α‐ or β‐transition region decreased gradually with the increase in the clay loading. Multiple melting behavior in PA66 was also observed. Thermal stability more or less decreased with an increasing inorganic content. Young's modulus and tensile strength were enhanced by introducing organoclay. Among the three types of nanocomposites prepared, PA66CX–E12 showed the highest improvement in properties, while PA66CX–E23 showed properties inferior to that of PA66CX–E00 without epoxy resin. In conclusion, an optimum amount of epoxy resin is required to form the strong interaction with the amide group of PA66. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1711–1722, 2006  相似文献   

12.
The effect of clay modification on organo‐montmorillonite/NBR nanocomposites has been studied. Organo‐montmorillonite/NBR nanocomposites were prepared through a melt intercalation process. NBR nanocomposites were characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), dynamic mechanical thermal analysis (DMTA) and a universal testing machine (UTM). XRD showed that the basal spacing in the clay increased, which means that the NBR matrix was intercalated in the clay layer galleries. On TEM images, organo‐montmorillonite (MMT) particles were clearly observed, having been exfoliated into nanoscale layers of about 10–20 nm thickness from their original 40 µm particle size. These layers were uniformly dispersed in the NBR matrix. The DMTA test showed that for these nanocomposites the plateau modulus and glass transition temperature (Tg) increased with respect to the corresponding values of pure NBR (without clay). UTM test showed that the nanocomposites had superior mechanical properties, ie strength and modulus. These improved properties are due to the nanoscale effects and strong interactions between the NBR matrix and the clay interface. Copyright © 2003 Society of Chemical Industry  相似文献   

13.
Polypropylene (PP)/clay nanocomposites prepared by melt blending technique using different percentages of clay with and without maleic anhydride grafted PP (MA‐PP) were studied. The intercalated and exfoliated structure of nanocomposites was characterized by X‐Ray Diffraction (XRD) and transmission electron microscopy (TEM). Because of the typical intercalated and exfoliated structure, the tensile modulus of the nanocomposites were improved significantly as compared to virgin PP. The viscoelastic behavior of the nanocomposites was studied by dynamical mechanical analysis (DMA) and the results showed that with the addition of treated clay to PP there was substantial improvement in storage modulus increases. The thermal stability and crystallization of the PP nanocomposites as studied by differential scanning calorimeter (DSC) and thermo gravimetric analysis (TGA) were also improved significantly compared to PP. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Organo‐clay polymer nanocomposites offer improved material properties at very low filler loadings making them of immediate interest for application in body panels, claddings, and instrument panels. This improvement in properties requires that the organo‐clay be well dispersed if not completely exfoliated. Conventionally, the dispersion and exfoliation of the organo‐clay is evaluated using transmission electron microscopy (TEM) and X‐ray diffraction (XRD). Although both TEM and XRD data were found to correlate with flexural modulus of thermoplastic olefin nanocomposite materials, only TEM proved successful in quantifying the dispersion of the organo‐clay in all nanocomposite materials (exfoliated, tactoid, or agglomerated tactoid). XRD was found to be capable of detecting exfoliation and intercalation but is limited because of clay dilution, preferred orientation, mixed‐layering, and other peak broadening factors. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1110–1117, 2004  相似文献   

15.
A systematic approach was adopted to study multicomponent clay-containing nanocomposites using compatibilized and non-compatibilized blends of polyamide 6 (PA6)/acrylonitrile-butadiene-styrene terpolymer (ABS) and their organoclay (OMMT) nanocomposites. For this purpose PA6/styrene-acrylonitrile copolymer (SAN) based blends and nanocomposites were selected as simple model systems. In this way the role of each component of the systems, especially the clay, compatibilizer, and polybutadiene fraction on the formation of intercalated or exfoliated OMMT structures as well as resulting dynamic mechanical properties (DMA) could be elucidated. Structural analysis of the model systems using theoretical approach, and X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and DMA revealed that the most crucial factor in controlling the morphology and achieving different levels of dispersion is the extent of interaction between clay and the polymer matrix. Morphological analysis revealed that the OMMT layers were dispersed and exfoliated largely in the PA6 phase but, some were also accumulated at the rubber particle surface which remained non-intercalated. The effect of a compatibilizer on the dispersion of OMMT was not completely clear. The SAN based nanocomposites containing PA6 showed fully exfoliated OMMT structures, whereas the ABS based nanocomposites, having an additional rubber fraction, showed a mixed exfoliated and also partly non-intercalated morphology. The OMMT did not change the general occurrence of the co-continuous structures but refined the structures and led to mechanical stiffening as indicated by the DMA results. A correlation was established between the changes in the morphological states and the DMA properties.  相似文献   

16.
A novel organically modified montmorillonite (OMMT) based on a bifunctional organic modifier‐12‐aminolauric acid (ALA) was synthesized. Polylactide (PLA) nanocomposites with this new and traditional OMMT were prepared by solution casting method. The effects of the organic modifiers on structure, morphology and thermal properties of PLA nanocomposites have been investigated using Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The results indicate that ALA has distinct effects on the dispersion of MMT platelets into the PLA matrix, where partial exfoliated as well as intercalated structures have been obtained, when compared with ordinary modifier, cetyltrimethyl ammonium bromide (CTAB). TGA data verifies that PLA nanocomposites with ALA‐MMT organoclay display enhanced thermal stability. The optimal clay loading of ALA‐MMT occurs at 3%wt, leading to the best compromise between clay dispersion and thermal properties. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

17.
《Polymer Composites》2017,38(9):1948-1956
Dynamically vulcanized thermoplastic elastomers (TPVs) based on polyamide‐6 (PA‐6) and poly(epichlorohydrin‐co‐ethylene oxide) (ECO) and their nanocomposites were prepared via melt‐blending process. The unfilled and organoclay (OC)‐filled TPVs were characterized using X‐ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry, thermal gravimetric analysis (TGA), and mechanical tests. XRD and TEM results showed that the OC particles were well exfoliated into the samples with high rubber content while both intercalated and exfoliated structures were found in the samples with low rubber content. The mechanical properties showed that ECO improved the elongation at break and the presence of OC increased the Young's modulus. Also, wide angle XRD analysis showed an increase in α‐crystals of PA‐6 with addition of ECO rubber. Moreover, it was found that by increasing OC content, crystallization temperature increased but the degree of crystallinity decreased. TGA showed that increasing ECO content decreased thermal stability of the samples, while the presence of OC did not have any considerable effect on the thermal stability. POLYM. COMPOS., 38:1948–1956, 2017. © 2015 Society of Plastics Engineers  相似文献   

18.
Nylon 6 nanocomposites were prepared using melt intercalation technique. Sodium montmorillonite (Na-MMT) was modified with octadecyl ammonium salt to evaluate the effect of clay modification on the performance of the nanocomposites. A comparative account with the nanocomposites prepared, using commercial clay cloisite 30B has been presented. X-ray diffraction (XRD) studies indicated an increase in the basal spacing of organically modified clays. Further, X-ray diffractograms of the nanocomposites displayed the absence of basal reflections suggesting the formation of an exfoliated structure. Transmission electron microscopy (TEM) investigations also confirmed exfoliation of clay galleries in the nanocomposites. Differential scanning calorimetry (DSC) measurements revealed both γ and α transitions in the matrix polymer as well as the nanocomposites. The crystallization temperature (Tc) exhibited a marginal increase in the C30B/Nylon 6 nanocomposites. Thermal stability of virgin Nylon 6 and the nanocomposites has been investigated using thermogravimetric analysis. Mechanical test revealed an increase in the tensile and flexural properties of Nylon 6 with the incorporation of nanoclays. Storage and loss modulus of virgin matrix increased with the incorporation of nanoclays. C30B/Nylon 6 nanocomposites exhibited optimum performance at 5% clay loading. Further, water absorption studies also confirmed comparatively lesser tendency of water uptake in these nanocomposites.  相似文献   

19.
Weian Zhang  Dazhu Chen  Quanbao Zhao  Yuee Fang   《Polymer》2003,44(26):7953-7961
A series of EVA/clay nanocomposites and microcomposites have been prepared via melt-blending. Using four kinds of EVA with different vinyl acetate (VA) contents: 28, 40, 50 and 80 wt%, and four kinds of clay: three are organophilic clay (OMMT) and one unfunctionalized clay (Na-MMT), the effects of different VA content of EVA and the kinds of the clay on the morphology and properties of EVA/clay nanocomposites were systematically investigated. In previous studies, there are only two distinct nanostructures to distinguish polymer/clay nanocomposites: the intercalated and the exfoliated. But in this paper, we proposed a new nanostructure—‘the wedged’ to describe the dispersion degree of clay in nanocomposites, it means the sheets of clay were partly wedged by the chains of polymer. The wedged, the intercalated and the partially exfoliated structures of EVA/clay nanocomposites were characterized by X-ray diffraction (XRD) and by high-resolution transmission electron microscopy (HRTEM). The enhanced storage modulus of EVA/clay nanocomposites was characterized by dynamic mechanical thermal analysis (DMTA). The enhanced degree in the storage modulus of the OMMT on EVA/clay nanocomposites with the partially exfoliated and intercalated structure is much higher than that with wedged structure, and that with the higher VA content is higher than that with the lower. The thermal stabilities of EVA/clay nanocomposites were also studied by thermal gravimetric analysis (TGA).  相似文献   

20.
Three types of maize starch with different amounts of amylose and amylopectin were used to prepare plasticized starch/clay nanocomposite films by casting. Studies by X‐ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the intercalation/exfoliation of the plasticized starch molecules took place into the clay galleries for the three types of starch. However, the plasticized waxy starch molecules were the easiest of them all to be intercalated/exfoliated, which was reflected in the highest increment of the stress at peak of these nanocomposites. Moreover, the lowest water uptake was showed by the plasticized high‐amylose starch/clay nanocomposites. It was concluded that varying contents of amylose and amylopectin influenced the formation of intercalated/exfoliated clay structures and also affected the interactions of clay with water. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号