共查询到20条相似文献,搜索用时 15 毫秒
1.
传统基于干扰噪声协方差矩阵(interference-plus-noise covariance matrix,INCM)重构的鲁棒自适应波束形成(robust adaptive beamformer,RAB)算法在多种样本数据协方差矩阵误差和信号导向向量误差的失配环境中具有较强的鲁棒性,但目前主流的INCM重构法都是对信号和干扰的导向向量通过建立凸优化模型来估计,这带来了很高的计算复杂度。为了解决这个问题,提出了一种低复杂度的基于INCM重构的RAB算法。该算法首先将干扰信号的导向向量分解为对应标称项和误差项的和,然后通过一种子空间方法估计得到误差项的单位向量。接下来对一个Capon空间谱功率最大问题进行求解,得到误差项的模值,以此得到重构的INCM。同时利用Capon空间谱中残差噪声的存在,使用交替投影法估计得到期望信号的导向向量,最后得到所提算法的权重向量。仿真实验表明所提算法在多种误差环境下具有较强鲁棒性的同时,还具有较低的计算复杂度。 相似文献
2.
Capon波束形成器作为理论上最优的波束形成器具有良好的干扰抑制能力。然而Capon波束形成器对于模型失配误差非常敏感,尤其是针对协方差矩阵和期望信号导向矢量误差,波束形成器的性能会严重下降,这大大降低了波束形成器的稳健性。目前,一系列基于协方差矩阵重构的稳健自适应波束形成算法被提出,这些算法核心思想都是利用Capon功率谱一定的角度范围内积分来重构出协方差矩阵。本文首先介绍了波束形成的信号模型,然后在Capon波束形成器的基础上,介绍了4种基于协方差矩阵重构的稳健自适应波束形成技术,最后对未来波束形成技术的研究热点进行了展望。 相似文献
3.
针对在自适应波束形成中,当采样次数较少或期望信号导向矢量存在误差以及训练数据中含有期望信号成分时导致波束输出信干噪比(SINR)下降的问题,提出了一种重构干扰噪声协方差矩阵并且估计期望信号导向矢量的稳健自适应波束形成方法。在期望信号波达方向的角度范围已知的条件下,首先利用多重信号分类(MUSIC)空间谱在不含期望信号的区域重构出干扰噪声协方差矩阵;然后推导了避免期望信号的导向矢量的估计值收敛到任一干扰的导向矢量或它们的线性组合的约束条件;进而以此约束条件和阵列输出功率最大化条件建立了期望信号导向矢量估计的优化问题,并使用凸优化软件估计出最优的期望信号导向矢量。讨论了该方法的计算复杂度并通过仿真实验验证了其有效性和优越性。仿真结果表明,当期望信号和干扰源存在随机指向误差和局部散射的情况下,所提方法在很大的输入信噪比范围内的输出信干噪比仍接近理论值,优于其他自适应波束形成方法。 相似文献
4.
5.
Chia-Ming Cheng Author Vitae Author Vitae 《Pattern recognition》2009,42(7):1318-1329
In this paper, a new algorithm is proposed to improve the efficiency and robustness of random sampling consensus (RANSAC) without prior information about the error scale. Three techniques are developed in an iterative hypothesis-and-evaluation framework. Firstly, we propose a consensus sampling technique to increase the probability of sampling inliers by exploiting the feedback information obtained from the evaluation procedure. Secondly, the preemptive multiple K-th order approximation (PMKA) is developed for efficient model evaluation with unknown error scale. Furthermore, we propose a coarse-to-fine strategy for the robust standard deviation estimation to determine the unknown error scale. Experimental results of the fundamental matrix computation on both simulated and real data are shown to demonstrate the superiority of the proposed algorithm over the previous methods. 相似文献
6.
强干扰的环境下,基于传感器阵列的波达方向(Direction of arrival,DOA)估计是阵列信号处理中的重要问题。虽然对于网格点目标现有方法的DOA估计精度较高,但对于离格点目标现有方法的DOA估计性能会严重下降。本文提出一种离格情况下的DOA估计方法,首先设计一种鲁棒的正交零陷矩阵滤波法(Robust orthogonal matrix filter with nulling,ROMFN),它结合了正交零陷滤波法(Orthogonal matrix filter with nulling,OMFN)和最差性能下的鲁棒自适应波束形成,在对离格点目标达到滤波效果的同时只需设计较少的网格点。此外,新的矩阵滤波法保留了高斯白噪声的特性,避免了噪声白化的预处理过程。其次基于离格点稀疏贝叶斯推断(Off-grid sparse Bayesian inference,OGSBI)和ROMFN,形成一种强干扰下DOA估计的新方法。与现有方法相比,仿真结果表明该方法可以在不同的网格间距、不同的信噪比和干噪比下获得更高的估计精度。 相似文献
7.
8.
在宽带波束形成中,若干扰信号从主瓣方向进入,会引起主瓣畸变、旁瓣电平抬高,从而使波束性能严重恶化。为了解决波束形成中的这些问题,研究了一种基于协方差矩阵重构和特征投影预处理(EMP)的宽带波束形成算法。该算法首先通过EMP算法求取阻塞矩阵,对接收信号进行干扰相消预处理阻塞掉主瓣干扰;然后通过相干信号子空间(CSM)方法、协方差矩阵重构求取合理的协方差矩阵;最后进行波束形成。在主瓣干扰、旁瓣干扰同时存在的情况下,该算法能够自适应地阻塞主瓣干扰、抑制旁瓣干扰,解决了存在主瓣干扰情况下宽带波束形成的波形畸变问题。计算机仿真验证了该算法有效性。 相似文献
9.
医学超声作为一种无创、无辐射和实时医学成像模态,在重大疾病早期诊断和精准诊疗领域发挥重要作用。影像分辨率是超声仪器的核心指标,也是影响临床精准诊疗的关键。近年来,超声成像设备呈现多样化的发展趋势,以满足不同的临床应用场景,如超快速成像设备、便携成像设备等。然而,这些超声设备通常以牺牲成像质量来实现特定应用场景的要求,影响了其临床可用性。因此,为提升医学超声设备的诊断能力,研究如何获得高质量超声图像至关重要。本文回顾了近年来高质量超声图像成像的相关工作,从波束形成算法和高质量超声重建算法两方面进行介绍,波束形成算法方面,介绍了以延时叠加方法为代表的传统的非自适应方法,以及 4 类成像效果更优越但计算复杂度更高的自适应的波束形成方法,并对波束形成的深度学习类方法进行了简要介绍。对于高质量超声重建算法的讨论,则是从传统方法和深度学习方法两方面展开,并重点介绍了在高质量超声重建算法方面具有更广阔应用前景的深度学习技术,包括卷积神经网络方法、生成对抗网络方法等。最后,本文从研究方法的侧重点等方面比较国内外研究进展,并讨论了未来发展趋势。 相似文献
10.
We propose a robust algorithm for estimating the projective reconstruction from image features using the RANSAC-based Triangulation method. In this method, we select input points randomly, separate the input points into inliers and outliers by computing their reprojection error, and correct the outliers so that they can become inliers. The reprojection error and correcting outliers are computed using the Triangulation method. After correcting the outliers, we can reliably recover projective motion and structure using the projective factorization method. Experimental results showed that errors can be reduced significantly compared to the previous research as a result of robustly estimated projective reconstruction. 相似文献
11.
针对一类未建模动态和扰动下的非线性随机系统的状态估计问题,提出了一种基于滤波参数在线辨识的鲁棒自适应滤波器.该算法通过极小化状态估计误差的方差同时正交化相邻时刻的滤波残差,在线辨识状态预报误差和滤波残差的协方差,实现了对未建模动态和扰动的自适应动态补偿,因此对未建模扰动具有很强的鲁棒性.仿真中研究了一个非线性随机时滞系统,其参数存在缓变和突变,时滞会多次跳变,量测噪声发生了均值漂移和方差突变.算法对时滞和参数的联合估计效果令人满意. 相似文献
12.
In this paper, a novel Support Vector Machine (SVM) variant, which makes use of robust statistics, is proposed. We investigate the use of statistically robust location and dispersion estimators, in order to enhance the performance of SVMs and test it in two-class and multi-class classification problems. Moreover, we propose a novel method for class specific multi-class SVM, which makes use of the covariance matrix of only one class, i.e., the class that we are interested in separating from the others, while ignoring the dispersion of other classes. We performed experiments in artificial data, as well as in many real world publicly available databases used for classification. The proposed approach performs better than other SVM variants, especially in cases where the training data contain outliers. Finally, we applied the proposed method for facial expression recognition in three well known facial expression databases, showing that it outperforms previously published attempts. 相似文献
13.
Robust diffusion adaptive estimation algorithms based on the maximum correntropy criterion (MCC), including adapt then combine MCC and combine then adapt MCC, are developed to deal with the distributed estimation over network in impulsive (long-tailed) noise environments. The cost functions used in distributed estimation are in general based on the mean square error (MSE) criterion, which is desirable when the measurement noise is Gaussian. In non-Gaussian situations, especially for the impulsive-noise case, MCC based methods may achieve much better performance than the MSE methods as they take into account higher order statistics of error distribution. The proposed methods can also outperform the robust diffusion least mean p-power (DLMP) and diffusion minimum error entropy (DMEE) algorithms. The mean and mean square convergence analysis of the new algorithms are also carried out. 相似文献
14.
Huanshui Zhang Author Vitae David Zhang Author Vitae Author Vitae Jun Lin Author Vitae 《Automatica》2004,40(9):1583-1589
This paper is concerned with a polynomial approach to robust deconvolution filtering of linear discrete-time systems with random modeling uncertainties. The modeling errors appear in the coefficients of the numerators and denominators of both the input signal and system transfer function models in the form of random variables with zero means and known upper bounds of the covariances. The robust filtering problem is to find an estimator that minimizes the maximum mean square estimation error over the random parameter uncertainties and input and measurement noises. The key to our solution is to quantify the effect of the random parameter uncertainties by introducing two fictitious noises for which a simple way is given to calculate their covariances. The optimal robust estimator is then computed by solving one spectral factorization and one polynomial equation as in the standard optimal estimator design using a polynomial approach. An example of signal detection in mobile communication is given to illustrate the effectiveness of our approach. 相似文献
15.
基于鲁棒学习的最小二乘支持向量机及其应用 总被引:3,自引:1,他引:2
鉴于最小二乘支持向量机比标准支持向量机具有更高的计算效率和拟合精度,但缺少标准支持向量机的鲁棒性,即当采样数据存在奇异点或者误差变量的高斯分布假设不成立时,会导致不稳健的估计结果,提出了一种鲁棒最小二乘支持向量机方法.该方法在最小二乘支持向量机基础上,通过引入鲁棒学习方法来获得鲁棒估计.仿真分析及某湿法冶金厂的应用实例验证了该方法的可行性和有效性. 相似文献
16.
Synchroextracting transform (SET) is a recently developed time-frequency analysis (TFA) method aiming to achieve a highly concentrated TF representation. However, SET suffers from two drawbacks. The one is that SET is based upon the assumption of constant amplitude and linear frequency modulation signals, therefore it is unsatisfactory for strongly amplitude-modulated and frequency-modulated (AM-FM) signals. The other is that SET does not allow for perfect signal reconstruction, which leads to large reconstruction errors when addressing fast-varying signals. To tackle these problems, in this paper, we first present some theoretical analysis for the SET method, including the existence of the fixed squeeze frequency, the performances of the instantaneous frequency (IF) estimator and the SET reconstruction. Then, a new TFA method, named synchroextracting chirplet transform (SECT), is proposed, which sharpens the TF representation by extracting the TF points satisfying IF equation, and retains an excellent signal reconstruction ability. Numerical experiments on simulated and real signals demonstrate the effectiveness of the SECT method. 相似文献
17.
18.
基于矢量相关性的自适应运动估计搜索算法 总被引:1,自引:1,他引:1
为了减少运动估计的计算量,提高视频压缩编码的效率,提出了一种基于矢量相关性的自适应运动估计搜索算法(简称NAME算法),该算法通过判断当前所要编码块的左、上、右上3个相邻块所对应的运动矢量之间的相关性,将所要编码的块划分为相关类型块和独立类型块,并自适应地对相关类型块和独立类型块采用不同的搜索方式以减少搜索点数并保证搜索准确度。仿真结果表明,该算法与全搜索、菱形搜索和六边形搜索等快速算法相比,在保证图像质量的前提下,搜索速度有了明显的提高。 相似文献
19.
Naser Parhizgar Mohammad‐Ali Masnadi‐Shirazi Abbas Alighanbari Abbas Sheikhi 《国际射频与微波计算机辅助工程杂志》2014,24(1):30-38
This article proposes a novel mutual impedance matrix model for compensating mutual coupling effects in adaptive array with application to adaptive nulling of interference signals. In the new method, extreme care has been taken into account for both self impedance and mutual impedance, relating to the mutual coupling effects. Numerical simulation results demonstrate the robustness and capability of this technique. By using the new method, it is found that both the accuracy of the positioning and depth of the nulls are significantly improved. Performance comparisons of the new methodology and several other previous techniques via a number of simulation are presented. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:30–38, 2014. 相似文献
20.
Paulo Rosa Jeff S. Shamma Carlos Silvestre Michael AthansAuthor vitae 《Automatica》2011,(5):1007-1014
This paper proposes an architecture referred to as Stability Overlay (SO) for adaptive control of a class of nonlinear time-varying plants. The SO can be implemented in parallel with a wide range of “performance-based” adaptive control laws, i.e., adaptive control laws that seek to improve closed-loop performance, but may be susceptible to instability in the presence of unaccounted model uncertainty. In this architecture, the performance-based adaptive control law designates candidate controllers based on performance considerations, while the SO supervises this selection based upon online robust stability considerations. A particular selection of a performance-based adaptive control law is not specified. Rather, this selection can be from a wide range of adaptive control schemes. This paper provides stability proofs for the SO architecture and presents a simulation that illustrates the applicability of the proposed method. 相似文献