首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compared to large-scale MIMO radar, coprime MIMO radar can achieve approximate estimation performance with reduced antenna number. In this paper, joint direction of arrival (DOA) estimation and array calibration for coprime multiple-input multiple-output (MIMO) radar is considered, and an iterative method for the estimations of DOA and array gain-phase errors is proposed. Based on the received data structure of coprime MIMO radar, trilinear decomposition is firstly adopted to obtain the estimations of transmit and receive direction matrices, which are perturbated by the gain-phase errors. Through equation transformation, the un-perturbated direction matrices and gain-phase errors can be iteratively updated based on Least squares (LS). Finally, the unique DOA estimation is determined from the intersection of transmit and receive direction matrices. The proposed algorithm achieves better DOA estimation and array calibration performance than other methods including estimation of signal parameters via rotational invariance techniques (ESPRIT)-like algorithm, multiple signal classification (MUSIC)-like algorithm and joint angle and array gain-phase error estimation (JAAGE) method, and it performs close to the method with ideal arrays. Multiple simulation results verify the algorithmic effectiveness of the proposed method.  相似文献   

2.
微电子机械系统(MEMS)技术的发展使惯性传感器行业发生了革命性的变化,这使得生产惯性传感器阵列成为可能。然而,低成本的惯性测量系统会受到比例因子和轴失准误差的影响,从而造成位置和姿态估计的精度降低。在单个IMU校正的基础上,设计了一套基于IMU阵列的标定方法,该标定方法为了解决传统六面法在标定IMU阵列过程中方向激励不足的问题,设计了正20面的校正装置,该标定方法不仅能够估计出IMU阵列中单个IMU的比例因子、轴失准误差和偏置,还能估计出阵列中不同IMU之间的坐标轴对齐误差。通过把标定结果和官方所给的校正参数进行对比,可以得到经过本文所提的IMU阵列标定方法得到的标定结果能够达到工厂标定结果的百分之五十到百分之九十。  相似文献   

3.
In this paper, the problem of direction-of-arrival (DOA) estimation for monostatic multiple-input multiple-output (MIMO) radar with gain-phase errors is addressed, by using a sparse DOA estimation algorithm with fourth-order cumulants (FOC) based error matrix estimation. Useful cumulants are designed and extracted to estimate the gain and the phase errors in the transmit array and the receive array, thus a reliable error matrix is obtained. Then the proposed algorithm reduces the gain-phase error matrix to a low dimensional one. Finally, with the updated gain-phase error matrix, the FOC-based reweighted sparse representation framework is introduced to achieve accurate DOA estimation. Thanks to the fourth-order cumulants based gain-phase error matrix estimation, and the reweighted sparse representation framework, the proposed algorithm performs well for both white and colored Gaussian noises, and provides higher angular resolution and better angle estimation performance than reduced-dimension MUSIC (RD-MUSIC), adaptive sparse representation (adaptive-SR) and ESPRIT-based algorithms. Simulation results verify the effectiveness and advantages of the proposed method.  相似文献   

4.
由于位置坐标参数的增加,三维传感网空间的定位难度较二维平面有所增大.单一的依靠接收信号强度(RSS)确定节点位置坐标的方法将使定位的不确定性增加,定位误差也较大.新型的阵列与智能天线的出现为节点间的到达角度(AOA)测量提供了方便,为此本文提出了一种三维传感网空间RSS与AOA混合测量的精确定位方法.将采用混合测量建立的非线性优化模型转化为线性方程,分别提出了节点位置坐标估计的非约束线性最小二乘(ULLS)及约束线性最小二乘(CLLS)方法.仿真测试了所设计算法的有效性,分析了不同测量噪声对位置坐标估计误差的影响.仿真表明所设计的ULLS和CLLS方法的计算速度快,相比于ULLS方法,采用约束后的CLLS方法的定位误差更小.在较小测量噪声范围内,ULLS和CLLS估计方法具有较高的稳定性和定位精度.  相似文献   

5.
Sensor position and velocity uncertainties are known to be able to degrade the source localization accuracy significantly. This paper focuses on the problem of locating multiple disjoint sources using time differences of arrival (TDOAs) and frequency differences of arrival (FDOAs) in the presence of sensor position and velocity errors. First, the explicit Cramér–Rao bound (CRB) expression for joint estimation of source and sensor positions and velocities is derived under the Gaussian noise assumption. Subsequently, we compare the localization accuracy when multiple-source positions and velocities are determined jointly and individually based on the obtained CRB results. The performance gain resulted from multiple-target cooperative positioning is also quantified using the orthogonal projection matrix. Next, the paper proposes a new estimator that formulates the localization problem as a quadratic programming with some indefinite quadratic equality constraints. Due to the non-convex nature of the optimization problem, an iterative constrained weighted least squares (ICWLS) method is developed based on matrix QR decomposition, which can be achieved through some simple and efficient numerical algorithms. The newly proposed iterative method uses a set of linear equality constraints instead of the quadratic constraints to produce a closed-form solution in each iteration. Theoretical analysis demonstrates that the proposed method, if converges, can provide the optimal solution of the formulated non-convex minimization problem. Moreover, its estimation mean-square-error (MSE) is able to reach the corresponding CRB under moderate noise level. Simulations are included to corroborate and support the theoretical development in this paper.  相似文献   

6.
陈浩  贾伟  李思佳 《计算机应用》2012,32(8):2109-2112
针对内插阵列变换(VIA)思想在非圆信号波达方向(DOA)估计算法中的应用问题,提出一种基于内插阵列变换的扩展传播算子实值算法——VIA-EPM实值算法。利用真实阵列流型与虚拟阵列流型之间的变换矩阵,将真实阵列输出转换为虚拟阵列输出,再根据信号源为实数的特点,分别求取虚拟阵列输出的实部和虚部,将其串联组合,扩展阵列输出的维数,通过对扩展阵列输出矩阵进行分块并得出扩展传播算子,进而得到一种传播算子(PM)类的DOA估计算法。仿真实验表明:存在阵元位置误差的情况下,VIA-EPM实值算法通过对阵元位置校准数据进行内插阵列变换,取得与阵元位置校准的扩展传播算子实值算法(EPM实值算法)相当的估计性能,保持了阵列扩展能力、高估计精度以及高分辨力;并且在二维阵元位置误差情况下,其估计性能明显优于阵元位置未校准的EPM实值算法。结合VIA-EPM实值算法的计算复杂度分析可以看出:它同时获得了内插阵列变换技术以及信号非圆特性的优势;与复运算相比,其复杂度也相对降低。  相似文献   

7.
A novel monopulse antenna for a tracking radar system is proposed using the time modulated antenna array technique. The time modulation technique applied in the antenna arrays overcomes the usual need for compromise between sum and difference beams and avoids the need for implementation of two separate feed networks. The time modulated antenna array also relaxes the error tolerance of the tracking accuracy from the amplitude and phase errors, due to the new design freedom of “time” which can be controlled precisely and quickly. Moreover, the position of the target can be recovered by two reflected echoes from one previously transmitted pulse, thus the tracking errors resulting from the excitation errors and receiver noise in conventional antenna arrays can be greatly alleviated. Numerical results show that with the aid of time modulation technique, one sum beam and two difference beams can be simultaneously obtained either for the boresight or off‐boresight target tracking. © 2010 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2010.  相似文献   

8.

In this paper, we analyze the relationship between sensor bandwidth and heading drift, and improve a pedestrian dead-reckoning (PDR) system considering the heading drift by the insufficient bandwidth. The PDR system using foot-mounted inertial measurement unit (IMU) is generally based on an inertial navigation system (INS). In order to reduce the estimated position error, INS is combined with the zero-velocity update (ZUPT), which assumes that the pedestrian shoe velocity is zero at the stance phase. Although the error can be reduced through ZUPT, the estimation errors due to other causes remain. The angular rate and acceleration signals measured from the inertial sensor have various frequency components depending on the motion of the shoe. In the heel strike phase, the signals change sharply due to the impact, and the high frequency components are generated compared to the other phase. Considering only the accuracy of the inertial sensor and using a sensor with insufficient bandwidth, estimation errors occur in the PDR system. In the standard PDR system, loss of information due to narrow bandwidth causes heading drift, which is the unobservable state in the filter. In order to compensate for the heading drift due to the insufficient bandwidth, we analyze the estimation errors according to the bandwidth. Moreover, we propose a PDR system considering the heading drift estimated based on sensor bandwidth. To improve the estimation performance of the PDR system, the proposed system compensates the heading drift according to the sensor bandwidth in the heel strike with the high frequency components. The experimental results show that the improved performance of the proposed system compared with the standard algorithm.

  相似文献   

9.
In this paper, the problem of two-dimensional angle estimation for monostatic multi-input multi-output (MIMO) array is studied, and an algorithm based on the usage of velocity receive sensors is proposed. The algorithm applies the estimation method of signal parameters via rotational invariance technique (ESPRIT) algorithm to obtain automatically paired two-dimensional angle estimation. By utilizing the relationship within the outputs of velocity sensors, the rotational invariance property of ESPRIT does not depend on the array geometry any more. Hence, the proposed algorithm can provide two-dimensional DOA estimation for the MIMO array without the knowledge of sensor locations in the array. The algorithm requires no peak searches, so it has low complexity. Furthermore, it has better angle estimation performance than propagator method using the same sensor configuration. Error analysis and Cramér–Rao bound (CRB) of angle estimation in MIMO radar are derived. Simulation results verify the usefulness of the algorithm.  相似文献   

10.
This paper addresses the estimation of different context features of a primary user network, such as transmitters’ positions, antenna patterns and directions, and propagation model characteristics. It is based on radio signal strength measurements obtained by a sensor network without any prior knowledge about the configuration of the primary transmitters in terms of antenna types or propagation model. A Maximum Likelihood Aided Context Feature Extraction (MLACFE) method is introduced based on applying image processing and a Maximum Likelihood estimation algorithm over the set of measurements to identify the existing transmitters in the scenario and their parameters. The proposed method can provide a quite similar performance than a classical ML method, in terms of average estimation errors while at the same time reducing the computation time in about three orders of magnitude, for the considered case study.  相似文献   

11.
均匀线阵中幅相及位置误差的快速校正方法   总被引:5,自引:0,他引:5  
着重研究了针对均匀线阵中由各阵元幅度相位不一致性及位置误差的综合影响引起的阵列流形误差的校正问题。该方法利用单信号源(可以为事先设置的校正源或某目标源),无须准确知道信号源的波迭方向,只须在校正过程中将阵列天线以已知角度旋转两次.即可对各阵元的幅度、相位及位置因子作较精确的估计,从而估计出综合误差存在情况下的阵列流形,并可同时估计信号源的波达方向。该方法无需迭代.计算简单快速.且具有较高的估计精度。计算机模拟实验结果表明了本文方法的有效性。  相似文献   

12.
IEKF滤波在移动机器人定位中的应用   总被引:1,自引:0,他引:1  
针对EKF中观测噪声方差估计不准确导致滤波器性能下降甚至发散的问题,提出了基于环境特征的迭代扩展卡尔曼滤波(IEKF)融合算法。该算法融合了里程计采集的机器人内部数据和激光雷达传感器采集的外部环境特征,在测量更新阶段多次迭代状态估计值并对机器人的位姿进行修正,减少了非线性误差,提高了定位精度。  相似文献   

13.
Ivan  Youji   《Digital Signal Processing》2004,14(6):590-613
A direction-of-arrival (DOA) estimation method using an array antenna has been developed based on a database retrieval technique. This method uses a database consisting of a set of correlation matrices of the array output vectors for various combinations of the quantized angles and signal powers. When a correlation matrix is estimated from an observed output vector, several correlation matrices close to the estimated one are searched out from the database, and the DOA is estimated based on the retrieved data. This method gives an accurate estimation, but the use of uniform quantization step size requires a large amount of storage space. In this paper, the relation between the quantization step size and the estimation accuracy is analyzed, and a nonuniform quantization scheme is developed to reduce the database size without sacrificing the estimation accuracy. A clustering technique is also introduced to alleviate the performance degradation caused by the retrieval of data which have similar correlation matrices but have much different angles. We show by simulations that the nonuniform quantization reduces the database size and the clustering improves the estimation accuracy, and that the proposed method is applicable to the array of three elements at the present.  相似文献   

14.
目标不同的航路及其运动特点对雷达测量数据质量影响很大.为了估算整个航路目标动态定位精度,依雷达测量目标工作原理,给出航路分段处理原则.对雷达测量数据与GPS测量真值比对的一次差,提出了基于三次B样条的雷达系统误差分离方法.通过处理某飞行任务的大量测量数据,估算出了不同航路的雷达动态测距、测角系统误差和随机误差.结果表明,雷达测距系统误差与斜距成正比;测角系统误差为设计指标的2倍多;其随机误差与设计指标相符.  相似文献   

15.
在无线传感器网络(WSNs)中,使用阵列天线进行到达角(AOA)估计存在成本昂贵和算法复杂度高的缺点,提出了一种基于接收信号强度指示(RSSI)的AOA估计算法。利用2个旋转的方向图部分重叠的定向天线接收RSSI值,通过双方向图求差法估计目标节点的AOA。实验结果表明:室内实验的AOA估计平均误差为6.7°,室外的平均误差为0.6°。该算法复杂度小,硬件成本低,适用于WSNs的节点定位。  相似文献   

16.
In this paper, we proposed a position and heading estimation algorithm using only range difference of arrival (RDOA) measurements. Based on RDOA measurements, an uncertain linear measurement model is derived and both position and heading are estimated with the instrumental variable (IV) method which can show unbiased estimation results for the uncertainty of the model. In addition, to remove the unknown bias included in the measurement model error, we augment the bias to the state vector of the model. Since the proposition inherits the characteristic of the IV method, it does not need the stochastic information of the RDOA measurement excepting the assumption that the RDOA measurement noise is zero mean and white, and the zero mean error performance can be guaranteed when variances of RDOA measurement noises are identical. Through simulations, the performance of the proposed algorithm is verified at various positions and headings in the sensor network and compared with the robust least squares method which shows a zero mean error performance under the assumption that the stochastic information is known exactly.  相似文献   

17.
L型阵列通道不一致及阵元位置误差的联合校正方法   总被引:1,自引:0,他引:1  
针对L型阵列中通道不一致和阵元位置误差同时存在的情况,利用辅助阵列和校正源,提出一种L型阵列通道不一致和阵元位置误差的解耦合估计方法.该方法计算量小,不需要误差参数的任何先验知识,且校正源的位置可以未知.理论分析和仿真结果表明,提出的方法能很好地解决L型阵列中通道不一致和阵元位置误差的联合校正问题,且两种误差的估计精度高.  相似文献   

18.
This article determines the near optimal conformal antenna array structure for direction‐of‐arrival (DOA) estimation through a comprehensive study on the planar and usual conformal antenna arrays including the cylindrical and hemispherical by using the directive antenna elements in all designs. To model the hemispherical structure, an improved multi‐face antenna array with three different tilts is proposed and compared with previous works in order to investigate the tilt effect and obtain the conclusive results. The Cramer‐Rao lower bound, multiple signal classification, and root‐mean‐square error algorithms are utilized to evaluate the estimation accuracy of all conformal structures. Finally, by comparing the estimation precision of all conformal structures it is shown that the purposed multi‐face structure as the hemispherical model has a better performance than other conformal structures in terms of the maximum angular coverage of the spatial resource. Moreover, the proposed study method in this article fully examines the impacts of the different conformal antennas geometric structure on the DOA estimation performance by involving the directive antennas radiation patterns.  相似文献   

19.
Angel of departure(AOD) based distributed localization scheme in wireless sensor networks allows the single antenna sensor node to estimate its own AOD information by an equivalent antenna array for further position calculation.However,the condition that the number of antennas at the multi-antenna agent/anchor node should be larger than the number of multipath signal components(MPCs) constrains its actual application.In this paper,we provide a more practical approach to achieve AOD information estimation under multipath environment.Given that the sensor node can not identify the line of sight(LOS) signal component due to the insufficient degree of freedom,which is determined by the above limiting condition,we introduce a synthetic aperture technique with the aid of a fast moving multi-antenna agent/anchor node.This operation greatly enlarges the degree of freedom of the equivalent antenna array constructed at sensor node end but without requiring other extra physical antennas equipped at agent/anchor node or sensor node end,which means that it relaxes the limiting condition.Therefore,the AOD information of LOS signal component can be estimated and extracted successfully in complex multipath environment.Theoretical analysis proves the effectiveness of our proposed synthetic aperture technique and numerical simulations show great performance improvement.  相似文献   

20.
The MUltiple SIgnal Classification (MUSIC) estimator has been widely studied for a long time for its high resolution capability in the domain of the direction of arrival (DOA) estimation, with the sources assumed to be point. However, when the actual sources are spatially distributed with angular dispersion, the performance of the conventional MUSIC is degraded. In this paper, the impact of the array geometry on the DOA estimation of spatially distributed sources impinging on a sensor array is considered. Taking into account a coherently distributed source model, we establish closed-form expressions of the MUSIC-based DOA estimation error as a function of the positions of the array sensors in the presence of model errors due to the angular dispersion of the signal sources. The impact of the array geometry is studied and particular array designs are proposed to make DOA estimation more robust to source dispersion. The analytical results are validated by numerical simulations.1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号