首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为拓宽顺丁橡胶(BR)的更广泛的应用,开发现代高性能顺丁橡胶复合材料,本文并用氢化SBS(SEBS)改善BR的抗拉强度和撕裂强度,研究了SEBS含量变化对BR/SEBS并用胶性能的影响。结果表明:BR/SEBS混炼胶的正硫化时间减少,交联密度下降,门尼黏度在SEBS含量为20份时最低,相应的BR/SEBS硫化胶的抗拉强度和撕裂强度最佳,分别是BR硫化胶的1.8倍和1.5倍;经过热空气老化,BR及BR/SEBS硫化胶的抗拉强度和撕裂强度均下降,但SEBS含量高于20份时,老化后的BR/SEBS硫化胶的抗拉强度和撕裂强度高于未老化的BR硫化胶。  相似文献   

2.
PA6/PP/SEBS-g-MAH共混物的相容性研究   总被引:2,自引:1,他引:2  
采用马来酸酐接枝(氢化苯乙烯/丁二烯/苯乙烯)共聚物(SEBS-g-MAH)作为增容剂,研究了增容剂用量对尼龙6/聚丙烯(PA6/PP)共混体系相态结构、力学性能的影响,以及在相同增容剂用量下不同PA6、PP配比对体系相形态的影响。结果表明,SEBS-g-MAH中的酸酐基团能与PA6末端的氨基发生化学反应,在PA6和PP的内表面形成PA6-SEBS接枝共聚物,明显改善了两相的界面相容性,并使共混物的力学性能得到显著提高。共混物冲击断面形貌的分析表明,共混物发生了明显的脆韧转变。  相似文献   

3.
研究了160℃条件下不同热氧老化时间对未添加抗氧剂和添加抗氧剂的长玻璃纤维(LGF)增强聚酰胺(PA)6(PA 6/LGF)复合材料力学性能、热稳定性、结晶度及表面形貌的影响,并采用热重分析,差示扫描量热法分析和扫描电子显微镜观察对PA 6/LGF复合材料进行了表征。结果表明:PA 6基体分子链的断裂、降解以及LGF与PA 6基体的脱黏导致了PA 6/LGF复合材料宏观力学性能、熔融温度、结晶温度、结晶度以及热稳定性的下降。添加抗氧剂的PA 6/LGF复合材料拉伸强度保持率为83.9%,而未添加抗氧剂的复合材料则为76.8%。添加抗氧剂能使PA 6/LGF复合材料具有相对优异的力学性能保持率。  相似文献   

4.
利用定制的熔融浸渍装置制备了长玻璃纤维增强聚酰胺66(PA66/LGF)复合材料,并对其力学性能、界面黏结性等进行了表征,探讨了玻璃纤维含量、润滑剂含量、相容剂含量以及切粒长度等因素对复合材料性能的影响,得到了PA66/LGF复合材料优化的配方设计与切粒长度.结果表明,当玻璃纤维含量为43%(质量分数,下同)、切粒长度...  相似文献   

5.
The morphology, tensile, impact properties, and thermal expansion behavior of polycarbonate (PC)/acrylonitrile‐styrene‐butadiene (ABS)/talc composites with different compositions and mixing sequences were investigated. From the studies of morphology of the PC/ABS/talc composites, it was observed that some talc particles were located in both the PC and the ABS phases of the blend but most were at the interface between the PC and ABS phases for every mixing sequence. Aspect ratios of the talc particles determined by TEM image analysis reasonably matched values computed from tensile modulus using composite theory. The thermal expansion behavior, or CTE values, was not significantly influenced by the mixing sequence. The impact strength of the PC/ABS/talc composites depended significantly on the mixing sequence; a premix with PC gave the poorest toughness. The molecular weight of the PC in PC/talc composites was found to be significantly decreased. It appears that the impact strength of the PC/ABS/talc composites is seriously compromised by the degradation of the PC caused by talc. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
PP-g-PS对PP/SBS增容作用的研究   总被引:3,自引:0,他引:3  
研究了聚丙烯(PP)固相接枝苯乙烯制备的PP-g-PS对PP/苯乙烯-丁二烯-苯乙烯三元嵌段共聚(SBS)相容性的影响,PP-g-PS明显改进了PP和SBS的相容性,改善了PP的低温韧性。  相似文献   

7.
将苯乙烯(St)和甲基丙烯酸环氧丙酯(GMA)通过乳液聚合接枝到聚丁二烯(PB)上,形成核壳结构接枝共聚物PB-g-PS和官能化接枝共聚物PB-g-(St-GMA),并考察了其对聚酰胺6/聚苯乙烯(PA6/PS)共混物相容性的影响。对共混物的流变性能、动态力学性能和形态结构进行了分析,结果表明,引入1 %官能化单体GMA后,共混物的平衡扭矩增加,PA6与PS两相的玻璃化转变温度差值变小,分散相尺寸明显减小,PB-g-(St-GMA)可以改善PA6/PS共混物的相容性。继续增加PB-g-(St-GMA)中GMA含量时,共混物相容性下降。  相似文献   

8.
The dynamic mechanical properties of A‐glass bead filled polypropylene (PP)/ethylene–propylene–diene monomers polymer (EPDM) ternary composites have been measured over a temperature range from −80 °C to 100 °C and at a fixed frequency of 1 Hz, using a dynamic mechanical analyser (DMA), to identify the effects of the filler content and its surface treatment with a silane coupling agent on the dynamic viscoelastic behaviour. The results show that the storage modulus (Ec) and loss modulus (Ec) of these composites with 10% volume fraction of EPDM at 25 °C increase non‐linearly with increasing volume fraction of glass beads (ϕg). At the same test conditions, the Ec value of the PP/EPDM filled with pretreated glass beads is higher than that of the uncoated glass bead filled PP/EPDM system, especially at higher ϕg, while the difference in Ec between both systems is very small. The mechanical damping for the former decreases with increasing ϕg, but the opposite is true for the latter. The glass transition temperature of these composites varies irregularly with ϕg. The dynamic complex viscosity increases nonlinearly with an increase of ϕg. In addition, the interfacial structure between the matrix and inclusions has been observed by means of a scanning electron microscope. © 1999 Society of Chemical Industry  相似文献   

9.
高导电镀银玻璃微珠/硅橡胶复合材料的结构与性能   总被引:9,自引:1,他引:8  
探讨了镀银玻璃微珠(SGB)的表面改性、粒径和用量对SGB甲/基乙烯基硅橡胶(VMQ)复合材料的导电性能、力学性能及相态结构的影响,考察了SGB/VMQ复合材料导电网络的影响因素。结果表明,采用硅烷偶联剂改性SGB,可以改善SGB/VMQ复合材料的力学性能和加工性能,其中使用乙烯基三乙酰氧基硅烷(牌号为A-151)还能使其导电性能保持不变。SGB的粒径越大,用量越多,SGB/VMQ复合材料的导电性能越好,当其粒径为41μm、用量300份时,填充的VMQ具有优良的力学性能和导电性能。在满足形成导电通路的前提下,应尽可能地减少SGB的用量,以改善材料的力学性能。  相似文献   

10.
An experimental investigation was carried out to study the effect of different surface treatments on the moisture absorption behavior of glass fabric/polyester composites. The materials under study included composites containing clean glass fabrics, fabrics treated with a silane coupling agent, and fabrics coated with a poly(dimethylsiloxane) elastomer. Weight gain data versus time of immersion were collected at three immersion temperatures and water uptake at equilibrium as well as apparent diffusion coefficients were calculated. The interlaminar shear strength was also measured at the initial dry state and at different stages of the absorption process to estimate the interfacial contribution to sorption behavior. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 843–851, 2005  相似文献   

11.
In this paper, the nanotubular halloysite nanotubes (HNTs)/disc-shaped diatomite mixture (HD) was used to study the synergistic reinforcing effect of the filler in polymer matrix (PP and PA6). The structure of the HNTs/diatomite mixture filler-filled polymer composites with different proportions of HNTs/diatomite was determined by XRD and SEM. The mechanical performance of the composites was extensively investigated. The results indicated that the HNTs/diatomite mixture filler with different shapes could significantly reinforce the mechanical performance of polymer regardless of whatever it was filled in — PP or PA6. The synergistic reinforcing effect of HNTs/diatomite mixture filler in polymer matrix was verified.  相似文献   

12.
Mixing of polyamide 6 (PA 6) and polyamide 66 (PA 66) is integrated in the trend of development of new and improved materials by combination of different polymers and some reinforcing materials to polymer composites. The specific polymer composite PA 6/PA 66 reinforced with short glass‐fibers combines the good coloring of PA 6, and the small moisture absorption of PA 66. Technical applications of PA 6/PA 66 composites are mainly used in the automotive industry. Specific requirements of this industry lead to the necessity to optimize the material resistance against crack propagation of the PA 6/PA 66 composites, using mechanical and fracture mechanical methods. So, the present investigations focus on fracture mechanics toughness optimization of the PA 6/PA 66 composites, including unstable and stable crack growth. The aim of this toughness optimization is to find out the optimal mixing ratio of PA 6/PA 66. Applications of PA 6/PA 66 in the automotive industry and specific client wishes are the main reasons for black‐coloring of the PA materials. The influence of several black‐colorants (carbon black, nigrosine, spinel, iron oxide) on mechanical and fracture mechanical properties of the PA composites is also investigated using fracture mechanical methods. As experimental fracture mechanical method, preferentially, the instrumented Charpy impact test (ICIT) and the new cut method to determine the stable crack growth of glass‐fiber reinforced materials was used. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Epoxy resin was filled with glass powder to optimize the tensile and flexural strength of the composite for structural applications by a research center in the University of Southern Queensland (USQ). To reduce costs, the center wishes to fill as much glass microspheres as possible subject to maintaining sufficient strength of the composites in structural applications. This project varies the percentage by weight of the glass powder in the composites. After casting the composites to the molds, they were cured at ambient conditions for 24 h. They were then postcured in a conventional oven and subjected to tensile and flexural tests. The contribution of the study was that if tensile and flexural properties were the most important factors to be considered in the applications of the composites, the maximum amount of glass powder can be added to the resin will be five (5) percent. It was also found that the fractured surfaces examined under scanning electron microscope were correlated with the tensile and flexural strength It is also hoped that the discussion and results in this work would not only contribute toward the development of glass powder reinforced epoxy composites with better material properties, but also useful for the investigations of tensile and flexural properties in other composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
To improve the interaction between syndiotactic polypropylene (SPP) and fibrous cellulose (FC), the effects of the addition of maleated polypropylene (MAPP) and FC surface modification with 3‐aminopropyltriethoxysilane (APTES) on SPP/FC composites were studied with respect to the morphology and the tensile properties. The addition of MAPP brought about an improvement in the interfacial adhesion between SPP and FC according to scanning electron microscopy observations and tensile testing. This improvement was, however, less effective than the improvement in the interfacial adhesion between isotactic polypropylene (IPP) and FC. SPP and MAPP partially or microscopically phase‐separated because of the IPP‐like polymer chain structure of MAPP. With respect to the compatibility between SPP and FC, FC surface modification with APTES was more suitable. The increase in Young's modulus was remarkable in the SPP/silanized FC composite with APTES. The tensile strength of the SPP/silanized FC composite with APTES was, however, considerably lower than that of the SPP/FC/MAPP composite. These results suggest that interfacial improvement between SPP and FC requires a compatibilizer or a surface modifier with a suitable primary structure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Advanced polymer composites containing organic–inorganic fillers are gaining increasing attention due to their multifunctional applications. In this work, poly(styrene‐butadiene‐styrene) (SBS) composites containing magnetite‐functionalized graphene (FG) were prepared by a dissolution ? dispersion ? precipitation solution method. Evidently, through morphology studies, amounts of FG were well distributed in the SBS matrix. Improvements in neat SBS properties with respect to FG loading in terms of thermal stability, creep recovery and mechanical properties are presented. As expected, the addition of FG improved the thermal stability and mechanical properties of the composites. The yield strength and Young's modulus of the SBS increased by 66% and 146% at 5 wt% filler loading which can be attributed to the reinforcing nature of FG. Similarly, an increase in the storage and loss modulus of the composites showed a reinforcement effect of the filler even at low concentration. The results also showed the significant role of FG in improving the creep and recovery performance of the SBS copolymer. Creep deformation decreased with filler loading but increased with temperature. © 2017 Society of Chemical Industry  相似文献   

16.
—Glass fiber/unsaturated polyester composites, prepared by impregnating glass braid with varying thickness coatings (from 200 Å up to 1600 Å thick) of polyester resin, were tested with a DuPont Dynamic Mechanical Analyzer. The effects of the polyester resin thickness and silane treatments on the dynamic mechanical properties of the composites were evaluated. The results are supported by Fourier transform infrared spectroscopy of the composite materials. It is shown that both the concentration and the organo-functional group of the silane coupling agent influence the damping, storage, and loss moduli as well as the glass transition temperature (Tg) of the matrix resin in the closest vicinity to the glass/resin bondline. In the absence of a silane inner layer, a low Tg, 'soft' boundary layer exists due to inhibition of the polyester resin cure by the glass surface. It is noted that a reactive silane, such as γ-methacryloxypropyltrimethoxysilane, promotes the formation of a 'soft' or 'rigid' (high Tg) boundary layer, depending on the concentration of the silane in the treating solution. On the other hand, a non-reactive silane, such as methyltrimethoxysilane, produces a 'rigid' interphase in the entire range of concentrations of the silane solution. An attempt was made to correlate the dynamic mechanical properties of the boundary layer with the fiber/polymer interfacial shear strength. Upon pretreatment of glass fibers with silane coupling agents, the relative magnitude of the loss modulus, E", and the nature of the boundary layer (Tg) seem to be better indicators of efficient stress transfer from the polymer to the glass fiber in the composite system than tan δ. Efficient stress transfer is characterized by a low value of E" and 'soft' boundary layers. The results suggest that the mere presence of glass/polyester chemical bonding is insufficient to ensure effective stress transfer. A strong bond results from the synergistic effect of glass/silane/polymer chemical bonding and a 'soft' boundary layer.  相似文献   

17.
Thermoplastic elastomer (TPE) nanocomposites based on polyamide‐6 (PA6)/poly(epichlorohydrin‐co‐ethylene oxide) (ECO)/multiwall carbon nanotube (MWCNTs) were prepared by melt compounding process. Different weight ratios of ECO (20, 40, and 60 wt %) and two kinds of functionalized and non‐functionalized MWCNTs were employed to fabricate the nanocomposites. The morphological, rheological, and mechanical properties of MWCNTs‐filled PA6/ECO blends were studied. The scanning electron microscopy of PA6/ECO blends showed that the elastomer particles, ECO, are well‐dispersed within the PA6 matrix. The significant improvement in the dispersibility of the carboxylated carbon nanotubes (COOH‐MWCNTs) compared to that of non‐functionalized MWCNTs (non‐MWCNTs) was confirmed by transmission electron microscopy images. The tensile modulus of samples improved with the addition of both types of MWCNTs. However, the effect of COOH‐MWCNTs was much more pronounced in improving mechanical properties of PA6/ECO TPE nanocomposites. Crystallization results demonstrated that the MWCNTs act as a nucleation agent of the crystallization process resulted in increased crystallization temperature (Tc) in nanocomposites. Rheological characterization in the linear viscoelastic region showed that complex viscosity and a non‐terminal storage modulus significantly increased with incorporation of both types of MWCNTs particularly at low frequency region. The increase of rheological properties was more pronounced in the presence of carboxylic (COOH) functional groups, in the other words by addition of COOH‐MWCNTs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45977.  相似文献   

18.
An experimental investigation was carried out to study the effect of a silicone coating on the mechanical properties of polyester/woven glass fabric composites, fabricated by resin transfer molding. E‐glass woven fabrics were coated with a silicone elastomer by solution dip coating. The effect of variation of silicone amounts on the impact resistance, toughness, and mechanical properties of the composite was determined. Short beam shear tests were performed to assess the effect of coating on the adhesion of the fiber to the matrix. The coated specimens exhibited worse interlaminar shear strength over that of uncoated fabrics. Three‐point bending tests were also performed to investigate the effect of the coating on flexural properties. Whereas flexural strength and Young's modulus decreased with increasing amount of coating, the toughness, represented by the area under the stress–strain curve, presented a maximum. Finally, notched Izod impact tests were carried out and the curve for the energy absorbed during impact versus the amount of coating also appeared to have a maximum, indicating an interesting slot for optimum impact performance. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1300–1308, 2004  相似文献   

19.
《Ceramics International》2021,47(21):29739-29747
Ionizing radiation interaction might occur during diagnostic imaging and radiotherapy procedures. It has been reported that gamma-ray radiation can damage the living cells through the energy transfer. Therefore, investigation the ionization radiation attenuation properties of biomaterials have a crucial importance. In the current study, tungsten disulphide (WS2) nanopowder-containing borate-based bioactive glass composites were prepared. Their physical, structural, mechanical and ionization radiation attenuation properties were investigated in detail. Monte Carlo simulations and radiation attenuation properties were studied through MCNPX and Phy-X/PSD. Results showed that sintering performed at 575 °C for 1 h in air atmosphere caused formation of some tungsten trioxide in the structure. Addition of WS2 nanopowders increased the bulk density and improved the mechanical properties of the prepared bioactive glass composites. Simulation studies revealed the influence of WS2 content on reduction the build-up factors and enhancement of the photon attenuation ability for all the considered photon energies.  相似文献   

20.
4‐Chloromethyl styrene was copolymerized with various molar ratio of methyl methacrylate or ethyl methacrylate by solution free radical polymerization method, at 70 ± 1°C using α,α′‐azobis(isobutyronitrile) as an initiator. Then, very highly sterically hindered tris(trimethylsilyl)methyl substituent was covalently linked to the obtained copolymers with liberation of chlorine atoms. The structure of all polymers was characterized and confirmed by FT‐IR, 1H and 13C NMR spectroscopy techniques. The average molecular weight and glass transition temperature of polymers were determined using gel permeation chromatograph and differential scanning calorimeter instruments, respectively. Study of differential scanning calorimetry analyses showed that chemical modification of 4‐chloromethyl styrene copolymers with tris(trimethylsilyl)methyl substituents leads to an increase in the rigidity and glass transition temperature of polymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 633–639, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号