首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single pulse shock tube has been used to study the pyrolysis of a hydrogenated sulphur compound, tetrahydrothiophene over the temperature range 1686–1885 K and pressures between 2.4 and 3.5 bars. Product yield and composition was determined using capillary column gas‐chromatography with flame ionization detection and flame photometric sulphur selective detection. The principal hydrocarbon products at all temperatures were C2H4 and C2H2. Other hydrocarbon reaction products were CH4, C2H6, C3H4, C3H6, C4H3, C4H6, C4H10, C4H4, C6H6, C4H2 and some traces of C5 and C6H5 species. The sulphur compounds identified were hydrogen sulphide, carbon disulphide, thiophene and traces of ethyl mercapton. The pyrolysis experiments indicated that at lower temperatures the hydrogenated thiophene molecule reacts in two unimolecular channels to form C2H4+(CH2)2–S in the major faster channel which may be the route for other products. However, a second lower route may be the formation of C3H6+CH2S. The rate constant obtained for tetrahydrothiophene pyrolysis calculated for this study was kdis(C4H8S)=1.26×1013 exp (316.9 kJ mol?1) s?1. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
Biomass pyrolysis gas (including H2, CO, CH4, CO2, C2H4, C2H6 and etc.) reforming for hydrogen production over Ni/Fe/Ce/Al2O3 catalysts was presented in this study. This study investigated how the operating conditions, such as the calcinations temperature of catalysts, the reaction temperature, the gas hourly space velocity (GHSV) and the ratio of H2O/C, affect the conversion of CH4 and CO2 and the selectivity of hydrogen from dry and steam reforming of pyrolysis gas. The experimental results indicated that, under the conditions: the reaction temperature of 600 °C, the GHSV of 900 h−1 and H2O/C of 0.92, the reaction efficiency is the optimal. Especially, the concentration of H2, CO, CH4, CO2, and C2Hn (C2H4 and C2H6) were 36.80%, 10.48%, 9.61%, 42.62%, 0.49% respectively. The conversion of CH4 and CO2 reached 45.9% and 51.09%, respectively. There were all kinds of reactions during the processing of reforming of pyrolysis gas. And the main reactions changed with the operation condition. It was due to the promoting or inhibiting interaction among different constituents in the pyrolysis gas and the different activity of catalysts in the different operation condition.  相似文献   

3.
Fast pyrolysis oil can be used as a feedstock for syngas production. This approach can have certain advantages over direct biomass gasification. Pilot scale tests were performed to investigate the route from biomass via fast pyrolysis and entrained flow gasification to syngas. Wheat straw and clean pine wood were used as feedstocks; both were converted into homogeneous pyrolysis oils with very similar properties using in-situ water removal. These pyrolysis oils were subsequently gasified in a pressurized, oxygen blown entrained flow gasifier using a thermal load of 0.4 MW. At a pressure of 0.4 MPa and a lambda value of 0.4, temperatures around 1250 °C were obtained. Syngas volume fractions of 46% CO, 30% H2 and 23% CO2 were obtained for both pyrolysis oils. 2% of CH4 remained in the product gas, along with 0.1% of both C2H2 and C2H4. Minor quantities of H2S (3 vs. 23) cm3 m−3, COS (22 vs. 94) cm3 m−3 and benzene (310 vs. 532) cm3 m−3 were measured for wood- and straw derived pyrolysis oils respectively. A continuous 2-day gasification run with wood derived pyrolysis oil demonstrated full steady state operation. The experimental results show that pyrolysis oils from different biomass feedstocks can be processed in the same gasifier, and issues with ash composition and melting behaviour of the feedstocks are avoided by applying fast pyrolysis pre-treatment.  相似文献   

4.
Methylcyclohexane is the simplest alkylated cyclohexane, and has been broadly used as the representative cycloalkane component in fuel surrogates. Understanding its combustion chemistry is crucial for developing kinetic models of larger cycloalkanes and practical fuels. In this work, the synchrotron vacuum ultraviolet photoionization mass spectrometry combined with molecular-beam sampling was used to investigate the species formed during the pyrolysis of methylcyclohexane and in premixed flame of methylcyclohexane. A number of pyrolysis and flame intermediates were identified and quantified, especially including radicals (e.g. CH3, C3H3, C3H5 and C5H5) and cyclic C6- and C7-intermediates (benzene, 1,3-cyclohexadiene, cyclohexene, toluene, C7H10 and C7H12, etc.). In particular, the observation of cyclic C6- and C7-intermediates provides important experimental evidence to clarify the special formation channels of toluene and benzene which were observed with high concentrations in both pyrolysis and flame of methylcyclohexane. Furthermore, the rate constants of H-abstraction of methylcyclohexane via H attack, and the isomerization and decomposition of the formed cyclic C7H13 radicals were calculated in this work. A kinetic model of methylcyclohexane combustion with 249 species and 1570 reactions was developed including a new sub-mechanism of MCH. The rate of production and sensitivity analysis were carried out to elucidate methylcyclohexane consumption, and toluene and benzene formation under various pyrolytic and flame conditions. Furthermore, the present kinetic model was also validated by experimental data from literatures on speciation in premixed flames, ignition delays and laminar flame speeds.  相似文献   

5.
《Combustion and Flame》1986,64(2):141-155
Soot formation in pyrolysis of chlorinated methanes, their mixtures with methane, and chlorinated ethylenes were studied behind reflected shock waves by monitoring the attenuation of an HeNe laser beam. An additional single-pulse shock-tube study was conducted for the pyrolysis of methane, methyl chloride, and dichloromethane. The experiments were performed at temperatures 1300–3000K, pressures 0.4–3.6 bar, and total carbon atom concentrations (1–5) × 1017 atoms/cm3. The amounts of soot produced in the pyrolysis of chlorinated hydrocarbons are larger than that of their nonchlorinated counterparts. The sooting behavior and product distribution can be generally explained in terms of chlorine-catalyzed chemical reaction mechanisms. The pathway to soot from chlorinated methanes and ethylenes with high H : Cl ratio proceeds via the formation of C2H, C2H2, and C2H3 species. For chlorinated hydrocarbons with low H : Cl ratio, the formation of C2 and its contribution to soot formation at high temperatures becomes significant. There is evidence for the importance of CHCl radical and its reactions in the pyrolysis of dichloromethane.  相似文献   

6.
Fuel-rich laminar premixed flat flames of an acetylene/propene (1:1) mixture and of 1,3-pentadiene were investigated at 50 mbar in order to compare their flame chemistries for identical C/H (0.625) and C/O (0.77) ratios; under these conditions, observed differences in the reaction pathways should be related to fuel structure. Concentrations of the most important species for benzene formation were obtained by molecular beam mass spectrometry (MBMS). Temperature was measured with laser-induced fluorescence (LIF) of seeded NO. The burnt gas temperatures in both flames were similar with maximum values of 2250 K and 2100 K, respectively. The data were analyzed with respect to the formation of C6 species, in particular to that of benzene as a key species in the soot formation mechanism. As a consequence of different fuel-specific primary decomposition reactions, the two flames show a strikingly different pattern of intermediate compounds, enhancing different possible benzene formation pathways. Relative reaction flows were also calculated from the experimental results which confirm this observation; however, large uncertainties in some important rate coefficients are noted. While the C3H3 recombination reaction contributes an important fraction of benzene formed in each flame, the contribution of e.g. C4H5 + C2H2 cannot be overlooked in the 1,3-pentadiene flame, C4H5 being an important pyrolysis product of 1,3-pentadiene. The present results can also be compared to those obtained under similar conditions in pure acetylene and pure propene flames as well as in flames burning further C5 fuels including 1-pentene and cyclopentene. The consistent data sets provided here as part of this series of systematic investigations should be valuable for testing flame models that include the fuel-rich chemistry of higher hydrocarbons.  相似文献   

7.
An experimental study of toluene pyrolysis (1.24 vol.% toluene in argon) was performed at low pressure (1.33 kPa) in the temperature range of 1200–1800 K. The pyrolysis process was detected with the tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam mass spectrometry (MBMS). Species up to m/z = 202 (C16H10), containing many radicals (CH3, C3H3, C5H3, C5H5, C7H5, C7H7, C9H7, C11H7 and C13H9) and isomers, such as C3H4 (propyne and allene), C4H4 (vinylacetylene and 1,2,3-butatriene), C5H5 (cyclopentadienyl radical and pent-1-en-4-yn-3-yl radical), C6H4 (3-hexene-1,5-diyne and benzyne), C6H6 (benzene and fulvene), C7H8 (toluene and 5-methylene-1,3-cyclohexadiene) and so on, were identified from near-threshold measurements of photoionization mass spectra, and the mole fraction profiles of the pyrolysis products were evaluated from measurements of temperature scan. Experimental results indicate that the reaction C7H8  C7H7 and the subsequent reactions are dominant at comparatively low temperature (<1440 K), while the reaction C7H8  C6H5 and subsequent reactions gradually become competitive and important with increasing temperature. Furthermore the barriers of the decomposition pathways of toluene and benzyl radical determined by quantum mechanical calculation are in good agreement with the initial formation temperatures of the species. Based on the mole fractions and formation temperatures of the detected pyrolysis species, a simple reaction network is deduced. At relatively high temperatures, H-abstraction is prevalent and the mole fraction of C2H2 is so high that many aromatics are formed through the hydrogen-abstraction/C2H2-addition (HACA) mechanism. Moreover the reactions of benzyl with toluene/benzyl/phenyl/propargyl radicals to directly produce larger aromatics should play an influential role in PAH formation. Meanwhile the five-member-ring recombination mechanism also plays an indispensable role in the aromatics growth, as cyclopentadienyl radical (C5H5) was determined to be a major product of the decomposition of toluene.  相似文献   

8.
The semi-hydrogenation of acetylene (C2H2 + H2 = C2H4, ΔH = −172 kJ mol−1) is a well-studied reaction that is important for purification of ethylene, C2H4, feed used in polyethylene production. Pd-based catalysts are most commonly used to remove acetylene from ethylene feed prior to Ziegler–Natta polymerization because acetylene is a poison for Ziegler–Natta catalysts. New applications of the analogous catalytic processes, with similar requirements for the conversion and selectivity, are considered for the storage of H2 within the context of the H2 economy. Here, a combination of experimental and theoretical studies was employed to explore the performance of synthesized Pd nanoparticles and the feasibility of using computational modelling for predicting their catalytic properties. Specifically, a model 5%Pd/Al2O3 nanocatalyst was successfully synthesized using high-throughput flame spray pyrolysis (FSP) method. As a catalyst for acetylene semi-hydrogenation, the material shows high conversion of 97%, a modest selectivity of 62%, and a turnover frequency of ethylene formation of 5 s−1. The experimental data were further supported by computational modelling of catalytic properties. Results of microkinetic simulations, based on parameters obtained from DFT calculations, over a Pd30/Al2O3(100) model system were correlated with experiments. The insights from this direct comparison of theory and experiments provide indications for future improvements of the theoretical predictions and for novel types of materials with improved catalytic properties.  相似文献   

9.
Pretreatment of the empty fruit brunch (EFB) from oil palm was investigated for H2 fermentation. The EFB was hydrolyzed at various temperatures, H2SO4 concentrations, and reaction times. Subsequently, the acid-hydrolysate underwent enzymatic saccharification under various temperature, pH, and enzymatic loading conditions. Response surface methodology derived the optimum sugar concentration (SC), hydrogen production rate (HPR), and hydrogen yield (HY) as 28.30 g L−1, 2601.24 mL H2 L−1d−1, and 275.75 mL H2 g−1 total sugar (TS), respectively, at 120 °C, 60 min of reaction, and 6 vol% H2SO4, with the combined severity factor of 1.75. Enzymatic hydrolysis enhanced the SC, HY, and HPR to 34.52 g L−1, 283.91 mL H2 g−1 TS, and 3266.86 mL H2 L−1d−1, respectively, at 45 °C, pH 5.0, and 1.17 mg enzyme mL−1. Dilute acid hydrolysis would be a viable pretreatment for biohydrogen production from EFB. Subsequent enzymatic hydrolysis can be performed if enhanced HPR is required.  相似文献   

10.
《Combustion and Flame》2001,124(1-2):246-254
Propene ignition was studied behind reflected shock waves at postshock temperatures ranging from 1270 to 1820 K and postshock pressures from 0.95 to 4.7 atm. Reactant concentrations were varied from 0.8 to 3.2% propene and from 3.6 to 15.1% oxygen diluted in argon, giving equivalence ratios ranging from 0.5 to 2.0. The pressure-based ignition delay correlation equation τ(s) = 4.2 × 10−15 [C3H6]0.378[O2]−1.043 exp(48800/RT5) for mol/cm3 and cal units was derived. The data could be accounted for using a reaction mechanism with 463 elementary reactions.  相似文献   

11.
The pyrolysis gas and soot production characteristics of propane at different temperatures and residence time were studied experimentally. Based on the combustion mechanism of propane proposed by the University of California, San Diego and Appel mechanism, a new mechanism of propane pyrolysis and soot formation, SD-APP_MECH was established. The reaction paths and dominant controlling reactions of propane pyrolysis and soot production were investigated. According to the experimental results, the new mechanism was optimized to predict the processes of propane pyrolysis and soot formation accurately. The optimized mechanism of propane pyrolysis was named as C3H8_MECH. The results showed that propane begins to pyrolyse at around 970 K, the main components of the syngas are H2, CH4, C2H2 and C2H4. At the later stage of pyrolysis, C2H2 was generated from C2H4 dehydrogenation at 1150 K. When the temperature is below 1173 K, little soot was produced. However, the soot formation rate increased obviously when the temperature is higher than 1250 K. The soot diameter increased with the temperature increasing, and the amount of soot formation decreased with the residence time reducing. The mole fraction of dominant products in propane pyrolysis and soot formation rate calculated from the C3H8_MECH mechanism agreed well with the experimental values.  相似文献   

12.
This paper describes mass, C, H, and O balances for wood chips pyrolysis experiments performed in a tubular reactor under conditions of rich H2 gas production (700–1000 °C) and for determined solid heating rates (20–40 °C s−1). Permanent gases (H2, CO, CH4, CO2, C2H4, C2H6), water, aromatic tar (10 compounds from benzene to phenanthrene and phenols), and char were considered in the balance calculations. Hydrogen (H) from dry wood is mainly converted into CH4 (more than 30% mol. of H at 900 °C), H2 (from 9% to 36% mol. from 700 to 1000 °C), H2O, and C2H4. The molar balances showed that the important yield increase of H2 from 800 to 1000 °C (0.10 Nm3 kg−1 to 0.24 Nm3 kg−1 d.a.f. wood) cannot be solely explained by the analyzed hydrocarbon compounds conversion (CH4, C2, aromatic tar). Possible mechanisms of H2 production from wood pyrolysis are discussed.  相似文献   

13.
The pyrolysis characteristics of macerals separated from Chinese Shenmu coal were systematically investigated using TG-151 pressurized thermobalance coupling with mass spectrometer under 0.1 MPa of Ar and H2, heating rate of 10°C/min and final temperature of 900°C. The TG/DTG results showed that vitrinite always had a higher volatile matter yield, larger maximum rate of weight loss, lower temperature of the maximum rate of weight loss than inertinite. Inertinite showed high response to the external hydrogen, especially at a higher temperature. The gases evolved during thermogravimetric analysis of macerals were analyzed on-line by mass spectrometer for the relative intensity of H2O, C1–C4, and C6H6. An obvious difference in evolution curves could be observed. The content of all gases evolved from vitrinite was higher than those from inertinite in both atmospheres. The amount of H2O and light hydrocarbons was higher in H2 than that in Ar, indicating the hydrogenation of oxygen-containing functional groups and free radicals formed during pyrolysis. The evolution curves of H2O and CH4 had different peak distributions and evolution temperatures under H2 and Ar, suggesting the different reaction mechanism during pyrolysis in different atmosphere. The evolution curves also revealed the different structural characteristics among vitrinite, inertinite and the parent coal.  相似文献   

14.
Two sets of axisymmetric laminar coflow flames, each consisting of ethylene/air nonpremixed flames with various amounts (up to 10%) of either dimethyl ether (CH3-O-CH3) or ethanol (CH3-CH2-OH) added to the fuel stream, have been examined both computationally and experimentally. Computationally, the local rectangular refinement method, which incorporates Newton's method, is used to solve the fully coupled nonlinear conservation equations on solution-adaptive grids for each flame in two spatial dimensions. The numerical model includes C6 chemical kinetic mechanisms with up to 59 species, detailed transport, and an optically thin radiation submodel. Experimentally, thermocouples are used to measure gas temperatures, and mass spectrometry is used to determine concentrations of over 35 species along the flame centerline. Computational results are examined throughout each flame, and validation of the model occurs through comparison with centerline measurements. Very good agreement is observed for temperature, major species, and several minor species. As the level of additive is increased, temperatures, some major species (CO2, C2H2), flame lengths, and residence times are essentially unchanged. However, peak centerline concentrations of benzene (C6H6) increase, and this increase is largest when dimethyl ether is the additive. Computational and experimental results support the hypothesis that the dominant pathway to C6H6 formation begins with the oxygenates decomposing into methyl radical (CH3), which combines with C2 species to form propargyl (C3H3), which reacts with itself to form C6H6.  相似文献   

15.
The effect of H2 and C2H2 addition on particle formation in the pyrolysis of C3O2/Ar mixtures was studied behind reflected shock waves. An existing reaction mechanism for the pyrolysis of highly-diluted C3O2 in argon was expanded to conditions with higher C3O2 concentrations (up to 33 volume%) at elevated pressures and high temperatures and was validated against experimental data. The simulations for the gas-phase chemistry were performed with the program CHEMKIN. The heterogeneous particle formation was modeled by post-processing using the program PREDICI relying on the Galerkin method. It was found that in C3O2/H2/Ar pyrolysis, the induction times and rate constants of particle formation do not differ significantly from those of pure C3O2/Ar pyrolysis. However, the presence of H2 reduced the particle volume fraction, the mean diameter of particles, the particle number density, and the maximum temperature rise of the mixture. Hydrocarbon-bonded hydrogen in C3O2/C2H2/Ar pyrolysis caused significantly increased induction times for particle formation, decreased particle volume fractions, and decreased temperature rises. The different reaction channels for carbon particle formation were identified in view of the role of hydrogen. An alternating reaction channel including C2 species played an important role in forming polycyclic aromatic hydrocarbons (PAH) in the mixtures.  相似文献   

16.
The reactive sorption-enhanced reforming process of simulated coke oven gas (ReSER-COG) was investigated in a laboratory-scale fixed-bed reactor with Ni–CaO/Al2O3 complex catalyst. Simulated coke oven gases that are free of or contain C2+ hydrocarbons (C2H4, C2H6, C3H6, C3H8) have been studied as feed materials of the ReSER process for hydrogen production. The effects of temperature, steam to methane molar ratio (S/CH4) and carbon space velocity on the characteristics of ReSER-COG were studied. The results showed that the hydrogen concentration reaches up to 95.8% at a reaction temperature of 600 °C and a S/CH4 of 5.8 under normal atmospheric pressure conditions. This reaction temperature was approximately 200 °C lower than that of the coke oven gas steam reforming (COGSR) processes used for the hydrogen production. The amount of H2 generated by ReSER-COG was approximately 4.4 times more than that produced by the pressure-swing adsorption (PSA) method per unit volume of COG. The reaction temperature was 50 °C lower when simulated COG with C2+ was used, as opposed to when COG without C2+ was used. The complex catalyst has a better resistance of coking during the ReSER-COG process when C2+ gas is present.  相似文献   

17.
This work presents a study of the performance of the modified plate reactor by rapid pyrolysis experiments with different biomass samples (MDF, bark pine and Avicel cellulose). The use of the plate instead of a grid allowed us to achieve a more homogeneous temperature distribution across the plate and, therefore, biomass sample. The mass yields of the major pyrolysis products CO, CO2, C2H2, CH4, C2H4 and C2H6 are measured as a function of the holding time (from 0 to 50 s) for a number of the final temperatures (from 435 to 1100 C) using the novel approach to quantitative FTIR analysis of biomass pyrolysis spectra. Special care was taken to demonstrate the influence of the secondary tar cracking on the yields of the permanent gases. Yields of major permanent gases plotted versus each other on a logarithmic scale show two distinctive regions reflecting primary and secondary kinetic processes. The experiments show that the modified plate reactor can be used for studying the kinetics of the primary decomposition of the biomass at temperatures ≤600 C.  相似文献   

18.
Using thermal analysis and mass spectrometry, this study examined samples of powdered pine bark by subjecting them to: (a) complete combustion, (b) partial combustion, and (c) pyrolysis. For each of the examined samples, which heated at the rate of 30°C min?1, temperature regions corresponded to moisture loss and the degassing process. Global and local maximum values of ionic currents representing H2O, CO2, CO, and additionally for hydrocarbons such as CH4, C2H4, and C2H5 for pyrolysis were identified. Based on the recorded values of ionic currents of hydrocarbons in the helium atmosphere, C2H5 dominance was determined at T ≤ 415°C, and CH4 dominance was determined at T > 415°C. Assuming first-order kinetics, thermogravimetric data were analyzed by the Arrhenius type model, and kinetic parameters were determined.  相似文献   

19.

In this article, thermal simulation experiments on the reactions in TSR process (CH4-CaSO4, C2H6-CaSO4, and C3H8-CaSO4) were carried out using autoclave at high temperature and high pressure. The gaseous and solid products were characterized by some advanced analytical methods. On the basis of the experimental results, the reaction mechanisms were tentatively investigated. It was found that three reactions can proceed to produce H2S, H2O, and CaCO3 as the main products at the temperature range of 450–700°C. The high simulation temperatures also resulted in the production of undesired material. The results obtained in this article can provide important information for the investigation on the natural gas destruction in gas reservoirs.  相似文献   

20.
《能源学会志》2020,93(6):2456-2463
This work focuses on bitumen slow pyrolysis. Mass and energy yields of oil, solid and gas were obtained from pyrolysis experiments using a semi-batch reactor in a nitrogen atmosphere, under three non-isothermal conditions (maximum temperature: 450 °C, 500 °C and 550 °C). The effect of temperature on the product yields was discussed. The gas compositions were analysed using gas chromatography (GC) and the heating value of oil and solid residue was also measured. Using a thermo-gravimetric analyser, kinetic parameters were evaluated through Ozawa-Flynn-Wall (OFW) method. Results showed that oil yield is maximum at 500 °C (50%). Moreover, gas yield increased with increasing pyrolysis temperature from 18% to 36%. On the other hand, solid yield showed an opposite trend: it decreased from 39% to 32%. As regard energy yields, they showed a similar trend with the mass ones. H2, CH4, C2H4, C2H6 and C3H8 are the main components of the produced gas phase. It has been noticed that the recovery of bitumen to liquid oil through pyrolysis process had a great potential since the oil produced had high calorific value comparable with commercial fuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号