首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Synthesis of Amphiphilic Diblock Copolymers by DPE Method   总被引:1,自引:0,他引:1  
Amphiphilic diblock copolymers, poly(methyl methacrylate)-b-poly(acrylic acid) (PMMA-b-PAA) and polystyrene-b-poly(acrylic acid) (PS-b-PAA), were prepared by 1,1-diphenylethene (DPE) method under mild conditions. Firstly, free radical polymerization of tert-butyl acrylate (tBA) was carried out with AIBN as initiator in the presence of DPE, giving a DPE-containing precursor, PtBA, with controlled molecular weight. Secondly, methyl methacrylate and styrene were polymerized in the presence of PtBA precursor, and PS-b-PtBA and PMMA-b-PtBA diblock copolymers with controlled molecular weights were obtained respectively. Finally, amphiphilic diblock copolymers, PMMA-b-PAA and PS-b-PAA, were prepared by hydrolysis of PS-b-PtBA and PMMA-b-PtBA. The formation of PS-b-PAA and PMMA-b-PAA was confirmed by 1H NMR. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to detect the self-assembly behavior of the amphiphilic diblock polymers in tetrahydrofuran (THF).  相似文献   

2.
In this article, we present new samples of lamellar magnetic nanocomposites based on the self-assembly of a polystyrene-b-poly(n-butyl methacrylate) diblock copolymer synthesized by atom transfer radical polymerization. The polymer films were loaded with magnetic iron oxide nanoparticles covered with polystyrene chains grown by surface initiated-ATRP. The nanostructuration of the pure and magnetically loaded copolymer films on silicon was studied by atomic force microscopy, ellipsometry, neutron reflectivity and contact angle measurement. The present study highlights the strong influence of the copolymer extremity - driven itself by the choice of the ATRP chemical route - on the order of the repetition sequences of the blocks in the multi-lamellar films. In addition, a narrower distribution of the nanoparticles’ sizes was examined as a control parameter of the SI-ATRP reaction.  相似文献   

3.
We report the synthesis of a well-defined linear tetrablock quaterpolymer of poly(butyl acrylate)-b-polystyrene-b-poly(methyl acrylate)-b-poly(methyl methacrylate) by combining atom transfer radical polymerization (ATRP) and a click coupling approach. For this purpose, polystyrene-b-poly(butyl acrylate) (AB) was prepared by ATRP using macroinitiator as α-trimethylsilyl(TMS)-alkyne ω-bromo polystyrene. The α-(TMS) end of the AB diblock copolymer was deprotected using tetrabutylammonium fluoride (TBAF) in THF. The ω-azide end of the CD diblock copolymer was made from poly(methyl methacrylate)-b-poly(methyl acrylate) (CD) via transformation of the bromine chain end by a simple nucleophilic substitution reaction with NaN3 in DMF. Click coupling between the ω-azide end in CD diblock copolymer with the α-alkyne end in the AB diblock copolymer was then performed by Cu1-catalyzed (3+2) cycloaddition. Gel permeation chromatography (GPC), FT-IR and 1H NMR spectroscopy confirmed the successful formation of a linear ABCD tetrablock copolymer via ATRP and click coupling.  相似文献   

4.
ATRP of methyl methacrylate (MMA), initiated with 1,3-bis{1-methyl-1-[(2,2,2-trichloroethoxy)carbonylamino]ethyl}benzene as a bifunctional initiator (BI) under CuCl catalysis was studied in the presence of 2,2′-bipyridine (bpy) or hexamethyltriethylenetetramine (HMTETA) ligands, in bulk or in toluene. With the bpy, the polymerization reaches only limited monomer conversions and products have broad MWDs. In contrast, polymerization in the presence of HMTETA is a well-controlled process, affords virtually quantitative conversion, giving PMMAs with narrow MWDs and predictable molecular weights within a range of more than one order of magnitude. NMR analysis of the prepared PMMA proved formation of linear polymers with im-measurable extent of chain branching or β-scission as undesired side reactions. The prepared α,ω-dichloro-PMMAs were used as macroinitiators for ATRP of tert-butyl acrylate (t-BuA), giving the corresponding triblock copolymers with narrow MWDs and molecular weights controllable in a wide range. Block copolymerizations were performed in dimethyl formamide (DMF) or acetone in the presence of pentamethyldiethylenetriamine (PMDETA) as ligand and could be accelerated by addition of metallic copper.  相似文献   

5.
The controlled/“living” radical polymerization of methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (HEMA), and styrene by atom transfer radical polymerization (ATRP) is reported. The effect of initiators and reaction conditions on the ATRP results was investigated. Controlled polymerizations with predictable molecular weights were performed on MMA at 40 ○C and 80 ○C using a CuCl/bipyridine (bipy) catalyst system in conjunction with 1-bromoethyl benzene as the initiator. The addition of a polar solvent was necessary to decrease the polymerization rate and afford low polydispersity materials. The ATRP processes followed a first-order kinetics with respect to the monomer concentration. The molecular weights of the resulting polymers were very close to their calculated values and increased with the conversion. The ATRP results of styrene showed a similar trend and revealed that CuBr/bipy or CuBr/PMDETA was a more suitable catalyst system than CuCl/bipy. In addition, it was found that controlled polymerizations could be readily carried out both in a nonpolar solvent or in bulk. Furthermore, by using the bromine-terminated polymer as the macroinitiator, diblock copolymers of PSt-b-PMMA, PSt-b-PHEMA, PMMA-b-PSt, and PMMA-b-PHEMA could be obtained. Thermal analysis and X-ray diffraction studies confirmed the amorphous structures of the resulting polymers.  相似文献   

6.
Liwei Zhang 《Polymer》2006,47(15):5259-5266
Reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene using bisallyl trithiocarbonate as a chain transfer agent (CTA) was studied. The polymerization exhibited first-order kinetics and the molecular weight increased linearly with increase of monomer conversion. Well defined allyl-functionalized telechelic polystyrene (PS), poly(tert-butyl acrylate) (PtBA) and corresponding triblock copolymers, polystyrene-b-poly(n-butyl acrylate)-b-polystyrene (PS-b-PnBA-b-PS) and poly(tert-butyl acrylate)-b-polystyrene-b-poly(tert-butyl acrylate) (PtBA-b-PS-b-PtBA) were prepared as characterized with GPC and NMR analysis. The allyl-end groups of the telechelic PS have been switched to 1,2-dibromopropyl groups quantitatively by bromine addition reaction, further substitution of the bromide with azide was also made. Furthermore, star PS with allyl-end-functionalized arms was synthesized by RAFT polymerization of divinyl benzene using allyl-functionalized PS as a macro-CTA via arm-first approach. Star polymer with a thiol-functionalized core was generated by aminolysis reaction of the star polymer and ethylenediamine. As a result, difunctionalized star polymer with allyl and thiol groups was obtained and was used as a stabilizer for the formation of gold nanoparticles.  相似文献   

7.
用α-溴代丙酸乙酯(EPN-B)/氯化亚铜(CuCl)/联二吡啶(bpy)作为ATRP催化引发体系,环己酮为溶剂,进行甲基丙烯酸2,2,2-三氟乙酯(TFEMA)的原子转移自由基聚合(ATRP),得到单分散PTFEMA-X预聚体。并以此预聚体为大分子引发剂引发甲基丙烯酸-β-羟乙酯聚合,得到分子质量可控、分子质量分布窄的聚甲基丙烯酸2,2,2-三氟乙酯-b-聚甲基丙烯酸-β-羟乙酯嵌段共聚物,用FTTR、~1H-NMR、GPC等对产物的结构与性能进行了表征。  相似文献   

8.
用α-溴代丙酸乙酯(EPN—B)/氯化亚铜(CuCl)/联二吡啶(bpy)作为催化引发体系,环己酮为溶剂,进行甲基丙烯酸2,2,2-三氟乙酯(TFEMA)的原子转移自由基聚合(ATRP),得到单分散PTFEMA—X预聚体。并以此预聚体为大分子引发剂引发甲基丙烯酸-β-羟乙酯聚合,得到分子质量可控、分子质量分布窄的聚甲基丙烯酸2,2,2-三氟乙酯-b-聚甲基丙烯酸-β-羟乙酯嵌段共聚物,用FTIR、^1H—NMR、GPC等对产物的结构与性能进行了表征。同时利用动态激光光散射(DLS)对嵌段共聚物的自组装行为进行了研究。  相似文献   

9.
The hyperbranched copolymers were obtained by the atom transfer radical copolymerization of p‐(chloromethyl)styrene (CMS) with N‐cyclohexylmaleimide (NCMI) catalyzed by CuCl/2,2′‐bipyridine (bpy) in cyclohexanone (C6H10O) or anisole (PhOCH3) with CMS as the inimer. The influences of several factors, such as temperature, solvent, the concentration of CuCl and bpy, and monomer ratio, on the copolymerization were subsequently investigated. The apparent enthalpy of activation for the overall copolymerization was measured to be 37.2 kJ/mol. The fractional orders obtained in the copolymerization were approximately 0.843 and 0.447 for [CuCl]0 and [bpy]0, respectively. The monomer reactivity ratios were evaluated to be rNCMI = 0.107 and rCMS = 0.136. The glass transition temperature of the resultant hyperbranched copolymer increases with increasing fNCMI, which indicates that the heat resistance of the copolymer has been improved by increasing NCMI. The prepared hyperbranched CMS/NCMI copolymers were used as macroinitiators for the solution polymerization of styrene to yield star‐shaped poly(CMS‐co‐NCMI)/polystyrene block copolymers by atom transfer radical polymerization. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1992–1997, 2000  相似文献   

10.
Katrien V. Bernaerts 《Polymer》2005,46(19):8469-8482
A new set of block copolymers containing poly(methyl vinyl ether) (PMVE) on one hand and poly(tert-butyl acrylate), poly(acrylic acid), poly(methyl acrylate) or polystyrene on the other hand, have been prepared by the use of a novel dual initiator 2-bromo-(3,3-diethoxy-propyl)-2-methylpropanoate. The dual initiator has been applied in a sequential process to prepare well-defined block copolymers of poly(methyl vinyl ether) (PMVE) and hydrolizable poly(tert-butyl acrylate) (PtBA), poly(methyl acrylate) (PMA) or polystyrene (PS) by living cationic polymerization and atom transfer radical polymerization (ATRP), respectively. In a first step, the Br and acetal end groups of the dual initiator have been used to generate well-defined homopolymers by ATRP (resulting in polymers with remaining acetal function) and living cationic polymerization (PMVE with pendant Br end group), respectively. In a second step, those acetal functionalized polymers and PMVE-Br homopolymers have been used as macroinitiators for the preparation of PMVE-containing block copolymers. After hydrolysis of the tert-butyl groups in the PMVE-b-ptBA block copolymer, PMVE-b-poly(acrylic acid) (PMVE-b-PAA) is obtained. Chain extension of the AB diblock copolymers by ATRP gives rise to ABC triblock copolymers. The polymers have been characterized by MALDI-TOF, GPC and 1H NMR.  相似文献   

11.
Amphiphilic diblock copolymers, poly(methyl methacrylate)-b-poly(acrylic acid) (PMMA-b-PAA) was prepared by 1,1-diphenylethene (DPE) method. First, free radical polymerization of methyl methacrylate was carried out with AIBN as initiator in the presence of DPE, giving a DPE-containing PMMA precursor with controlled molecular weight. Amphiphilic diblock copolymer PMMA-b-PAA was then prepared by radical polymerization of acrylic acid (AA) in the presence of PMMA precursor. The formation of PMMA-b-PAA was confirmed by 1H NMR spectrum and gel permeation chromatography. Transmission electron microscopy and dynamic light scattering were used to detect the self-assembly behavior of the amphiphilic diblock polymers in methanol.  相似文献   

12.
Summary The diblock copolymers poly(10-hydroxydecanoic acid)-block-polystyrene (PHDA-b-PSt) were synthesized by combining enzymatic condensation polymerization of 10-hydroxydecanoic acid (HDA) and atom transfer radical polymerization (ATRP) of styrene (St). PHDA was firstly obtained via enzymatic condensation polymerization catalyzed by Novozyme-435. Subsequently one end of poly(10-hydroxydecanoic acid) (PHDA) chains was modified by reaction with α-bromopropionyl bromide and the other was protected by chlorotrimethylsilane (TMSCL), respectively, the resulting monofunctional macroinitiator was used in the ATRP of St using CuCl/2,2-bipyridine (bpy) as the catalyst system to afford the diblock copolymers including biodegradable PHDA blocks and well-defined PSt blocks.  相似文献   

13.
AB diblock copolymers were prepared by use of poly(tert‐butyl (meth)acrylate) (PtBA/PtBMA) as monofunctional macroinitiator in atom transfer radical polymerization of various (meth)acrylates (methyl, butyl) in the presence of the CuBr/N, N, N′, N′, N″‐pentamethyldiethylenetriamine catalyst system. Then using the diblock copolymer as macroinitiator with a bromine atom at the chain end, ABC and ABA triblock copolymers containing at least one PtBA or PtBMA segment were synthesized via polymerization of the selected (meth)acrylic monomer. Gel permeation chromatography was applied to determine molecular weights and polydispersity indices. The latter, for block copolymers prepared without deactivator addition, were in the range 1.2‐1.6 with a high degree of polymerization (150‐500). The chemical compositions of the block copolymers were characterized with 1H nuclear magnetic resonance. The kind of combined segments and their lengths influenced the glass transition temperature (Tg) determined by differential scanning calorimetry. Copyright © 2012 Society of Chemical Industry  相似文献   

14.
Uma Chatterjee 《Polymer》2005,46(5):1575-1582
ATRP of several methacrylates viz. methyl methacrylate (MMA), ethyl methacrylate (EMA), n-butyl methacrylate (nBMA), t-butyl methacrylate (tBMA), benzyl methacrylate (BzMA) and (N,N-dimethylamino)ethyl methacrylate (DMAEMA) has been studied in neat as well as aqueous (up to 12 vol% water) acetone at 35 °C using CuCl/bipyridine (bpy) catalyst and ethyl 2-bromoisobutyrate as the initiator. Addition of water significantly enhances the rate of polymerization without losing control. Unlike CuCl/bpy the CuBr/bpy catalyst gives poor control which is attributed to the lower solubility and consequent heterogeneity in the latter case. Of the other ligands used with the CuCl catalyst viz. o-phenanthroline (o-phen), 1,1,4,7,7-pentamethyldiethylenetriamine (PMDETA), 1,1,4,7,10,10-hexamethyltriethylenetetramine (HMTETA), Me6TREN only o-phen offers reasonably good control. The CuCl/bpy catalyst system has been used also in preparing some di- and tri-block copolymers with reasonably low polydispersity index (PDI) at ambient temperature (35 °C) using aqueous acetone as the solvent. The following block copolymers have been prepared PMMA-tBMA, PMMA-b-tBMA-b-MMA, PMMA-DMAEMA, by this method.  相似文献   

15.
Summary A new method is reported for synthesizing AB-type diblock copolymer polycaprolactone-block-polystyrene (PCL-b-PSt) from a novel bifunctional initiator 2.2.2-trichloroethanol (TCE) by combining two different polymerization techniques: enzymatic ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP). Trichloromethyl terminated PCL was prepared by enzymatic ROP of ε-caprolactone (ε-CL) in the presence of Novozyme-435 and TCE as biocatalyst and initiator, respectively, and subsequently employed in ATRP of styrene (St) using CuCl/2, 2-bipyridine (bpy) as the catalyst system. The GPC and NMR analysis indicated the formation of the diblock copolymer including the biodegradable PCL block and the well-defined PSt block.  相似文献   

16.
Xiaoyi Sun  Xiaohua Huang  Qi-Feng Zhou 《Polymer》2005,46(14):5251-5257
The synthesis of ABC triblock copolymer poly(ethylene oxide)-block-poly(methyl methacrylate)-block-polystyrene (PEO-b-PMMA-b-PS) via atom transfer radical polymerization (ATRP) is reported. First, a PEO-Br macroinitiator was synthesized by esterification of PEO with 2-bromoisobutyryl bromide, which was subsequently used in the preparation of halo-terminated poly(ethylene oxide)-block-poly(methyl methacrylate) (PEO-b-PMMA) diblock copolymers under ATRP conditions. Then PEO-b-PMMA-b-PS triblock copolymer was synthesized by ATRP of styrene using PEO-b-PMMA as a macroinitiator. The structures and molecular characteristics of the PEO-b-PMMA-b-PS triblock copolymers were studied by FT-IR, GPC and 1H NMR.  相似文献   

17.
The versatile chloromethyl TIPNO-based alkoxyamine was efficiently transformed into other valuable functionalised TIPNO-based alkoxyamines such as amino alkoxyamines which are interesting initiators for block copolymers and bisalkoxyamines in good yield and in two steps at the most. One bisalkoxyamine has allowed to prepare well-defined polystyrene-b-poly(n-butyl acrylate)-b-polystyrene symmetrical triblock copolymer. The last representative example of such alkoxyamines is a styrenic alkoxyamine which was copolymerized with styrene to afford branched polystyrene. Finally, for the first time branched poly(n-butyl acrylate) by nitroxide mediated radical polymerization was obtained and was a efficient macroinitiator of styrene, which indicates that the radical polymerization mediated by this styrenic alkoxyamine is living.  相似文献   

18.
Amphiphilic block copolymers have been investigated for their utilization in emulsion polymerization of butyl methacrylate. Special attention has been paid to the adsorption mechanism of the block copolymers from systematic measurements of equilibrium adsorption isotherms. A series of well-defined water-soluble amphiphilic block copolymers, composed of poly(butyl methacrylate) and poly(sodium methacrylate) blocks, were synthesized by anionic polymerization of butyl methacrylate and tert-butyl methacrylate followed by the thermal deprotection of the tert-butyl ester groups and final hydrolysis. The number density of emulsion polymer particles NP varied as [copolymer]α, α lying between 0.44 and 0.73 according to the hydrophilic content of the copolymers. In contrast with SDS taken as a reference emulsifier, the adsorption of the copolymers was very strong and this provided quite an efficient stabilization of the polymer particles during emulsion polymerization, even at low concentrations (<10−4 mol L−1) and low coverages (<10% of the interfacial area).  相似文献   

19.
Suspensions of diblock and triblock copolymer particles comprising a poly(n-butyl acrylate) first/central block and polystyrene or poly(methyl methacrylate) second/outer blocks were synthesized by nitroxide-mediated controlled/living free-radical emulsion polymerization. Monofunctional and difunctional alkoxyamines based on the nitroxide SG1 were used as initiators. For the sake of simplicity, sequential monomer additions were performed without any removal of unreacted monomer. Self-assembly of the obtained block copolymers was investigated both under the latex form as well as after different thermal treatments. AFM and TEM analyses revealed the occurrence of “onion-like” lamellar microphases directly inside latex particles for high enough copolymer molar masses and irrespective of molar mass distribution. This particular organization evolved towards more classical block copolymer morphologies upon solvent casting and/or thermal annealing of latex films.  相似文献   

20.
Silica nanoparticles were successfully modified with miktoarm brushes via atom transfer radical polymerization (ATRP) using three different approaches. In the first approach: “graft onto and from”, a poly(tert-butyl acrylate) (PtBA) macroinitiator was grafted onto the surface of a monomer-modified silica nanoparticle. Then, polystyrene (PSt) brush was grafted from the surface-tethered reactive chain end. In the second approach: “two-step reverse ATRP”, the PtBA and poly(n-butyl acrylate) (PBA) brushes were consecutively grafted from initiator-modified silica particles via ATRP. The polymerization was initiated from the silica surface via a two-step controlled thermal decomposition of surface-tethered diazo initiator moieties. In the third method: “diblock first”, a diblock copolymer of poly(tert-butyl acrylate) and poly(glycidyl methacrylate) (PtBA-b-PGMA) was grafted onto amine-modified silica particles. The diblock copolymer was covalently attached to the silica surface via interaction between surface-tethered amine groups and the short reactive block containing glycidyl groups. Next, the polystyrene brushes were grafted from surface-tethered reactive chain end. The materials prepared by three different approaches were characterized using gel permeation chromatography (GPC) and thermogravimetric analysis (TGA). The PtBA brushes were hydrolyzed under acidic conditions to form poly(acrylic acid) (PAA) brushes. The resulting materials were imaged using atomic force microscopy (AFM) and transmission electron microscopy (TEM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号