首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A spherical TiCl4/MgCl2‐based catalyst was used in the synthesis of in situ isotactic polypropylene/ethylene–propylene random copolymer blends by propylene bulk polymerization and subsequent gas‐phase copolymerization of ethylene with propylene. Different copolymerization conditions, such as the reaction time, monomer pressure, and composition, were investigated, and their influences on the structure and properties of the products were studied. Raising the monomer pressure was the most effective way of speeding up the copolymerization, but it caused more increases in the random copolymer than the block copolymer fractions. Increasing the ethylene content of the monomer feed also resulted in higher reaction rates and copolymer contents, but the ethylene contents of both the random and block copolymer fractions were also raised. In situ blends that contain more than 50 wt % copolymer were prepared. The mechanical properties of the blends, including the impact strength and flexural modulus, were regulated in a rather broad range with changes in the copolymerization conditions. The properties were highly dependent on the amount, distribution, and chain structure of the copolymer fractions. The impact strength was influenced by both the random copolymer and block copolymer portions in a complicated way, whereas the flexural modulus was mainly determined by the amount of random copolymer. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 445–453, 2002; DOI 10.1002/app.10415  相似文献   

2.
A unique series of ethylene and propylene sequential polymerization experiments have been carried out in a stirred bed gas phase reactor using unsupported Stauffer AA catalyst (TiCl3· $\frac{1}{3}$AlCl3). Several interesting kinetic results were observed. It was found that propylene causes rate enhancement for a subsequent ethylene polymerization but that ethylene causes a rate reduction for a subsequent propylene polymerization. Furthermore, the rate enhancement/reduction effect increases with the duration of the preceding polymerization. Chemical/kinetic effects were found to be the likely causes of both the rate enhancements and the rate reductions observed during sequential polymerization. It was also shown that enhanced monomer sorption caused by the presence of a more soluble component, such as a heavier comonomer, does contribute to rate enhancement during simultaneous copolymerizations, but is not a factor for sequential polymerizations. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
Nanosized ethylene–propylene rubber (EPM) latex with a particle size of 47 nm was synthesized via an alternative route consisting of isoprene (IP) polymerization followed by hydrogenation. First, the IP monomer was polymerized by differential microemulsion polymerization to obtain polyisoprene (PIP) rubber latex with a particle size of 42 nm. The structure of synthetic PIP was hydrogenated at the carbon–carbon double bonds to produce an ethylene–propylene copolymer by diimide reduction in the presence of hydrazine and hydrogen peroxide using boric acid as promotor. The degree of hydrogenation was determined by proton nuclear magnetic resonance (1H‐NMR) spectroscopy and the structure of the ethylene–propylene copolymer was identified by 13C‐NMR spectroscopy. In nanosized PIP hydrogenation, the hydrogenation level was found to be increased by boric acid addition. An EPM yield of 94% was achieved using a hydrogen peroxide : hydrazine ratio of 1.5 : 1. The EPM produced from PIP has high thermal stability with the maximum decomposition temperature of 510°C and a glass transition temperature of ‐42.4°C close to commercial ethylene–propylene diene rubber. Dynamic mechanical analysis indicated that EPM had a maximum storage modulus due to the saturated carbons domains of the ethylene segments in the polymer chains. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
Macroporous polymer composites with photocatalytic activity are prepared by the polymerization of surface modified TiO2 nanoparticle stabilized high internal phase emulsions. Poly(ethylene glycol‐b‐propylene glycol‐b‐ethylene glycol) triblock copolymer is used to synthesize surface modified TiO2 anatase via a sol–gel method. Macroporous composites are obtained by the ring opening metathesis polymerization of dicyclopentadiene within the particle‐stabilized high internal phase emulsion templates. Photocatalytic activity of the resulting macroporous polymer composites is described by the kinetic data of the heterogeneous photocatalytic degradation reaction of 4‐nitrophenol.  相似文献   

5.
6.
聚丙烯反应器合金化研究   总被引:10,自引:0,他引:10  
研究了丙烯本体聚合后在聚丙烯基体中进行乙丙共聚合的各种反应条件,发现共聚合金中的共聚物含量和乙烯含量都随反应温度的升高、时间的延长、气相中乙烯含量增加和气相压力的增加而增加。其中气相乙烯含量和气相压力的改变对共聚物的组成影响最显著,随着气相乙烯含量和气相压力的增加,合金中EP和乙烯含量随之增加,同时也发现,聚丙烯合金中的乙烯含量高达27%时,聚合物粒子仍有较好的流动性。这对工业生产具有非常重要的指导意义。  相似文献   

7.
This study presents the experimental study of semibatch emulsion and miniemulsion copolymerization of vinyl acetate (VAc) and ethylene to vinyl acetate-ethylene (VAE) copolymer at 60°C and 80–300 psig. In the miniemulsion copolymerization, a water-soluble initiator (K2S2O8) is used and VAc miniemulsion is prepared in presence of surfactant and cosurfactant using a sonicator or a high-shear homogenizer. Then, ethylene gas is supplied to the reactor at constant partial pressure. In a miniemulsion process, the mass transfer limitations of VAc from monomer droplets to the aqueous phase, and to micelles or polymer latex particles that are present in conventional macro-emulsion polymerization can be eliminated and the transfer of ethylene dissolved in the aqueous phase to the miniemulsion droplets is the major ethylene transport process for the polymerization. The experimental data show that the amount of ethylene incorporation into the copolymer is higher in miniemulsion polymerization than in emulsion polymerization. The ethylene pressure has been found to have a strong impact on the ethylene incorporation into the copolymer phase in both emulsion and miniemulsion copolymerizations but the increase is more pronounced in miniemulsion case. The VAE copolymer latex particles prepared by miniemulsion polymerization exhibited higher storage stability than those prepared by macro-emulsion polymerization.  相似文献   

8.
The initial stages of gas‐phase polymerizations of propylene and ethylene are analyzed using a fixed bed stopped flow reactor. The very early development of particle morphology and polymer properties is analyzed for three different commercial catalyst systems: MgCl2‐ and SiO2‐supported Ziegler–Natta and SiO2‐supported metallocene. It is shown that, depending on the operating conditions, distinct nonuniform catalyst fragmentation patterns can develop, confirming different scenarios described by published fragmentation models. In addition, it is shown that the molecular weight distributions and polymer yields obtained during the very early stages of the polymerization suggest the existence of significant temperature gradients inside the growing polymer particles. Finally, it is shown that the ratio of catalyst to glass beads in the bed can have a pronounced effect on the evolution of the polymerization reaction. This can be interpreted in terms of the significant temperature difference between the polymer particles and the gaseous monomer stream. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

9.
During propylene polymerization with the Cr(acetylacetonate)3/MgCl2–Et2AlCl–ethylbenzoate catalyst system which shows high isospecificity for propylene polymerization, it was found that the chain transfer and termination reactions can be neglected. Based on this result, some stepwise polymerizations of propylene and ethylene were carried out with the same catalyst system varying polymerization conditions. The resulting copolymers were separated by temperature rising elution fractionation (TREF) and afforded two fractions which were eluted at different temperatures. From the 13C NMR, DSC and GPC analyses of each fraction, it was considered that the corresponding block copolymer existed in the fraction eluted at higher temperature. © 2003 Society of Chemical Industry  相似文献   

10.
Ethylene–propylene copolymerization with a TiCl4/MgCl2 type ZN catalyst was conducted for different durations from 30 to 600 s, and changes of polymerization rate, concentration of active centers ([C*]) and copolymer chain structure with time were traced. The copolymerization rate decayed with time, but [C*]/[Ti] increased in the same period. This was attributed to release of more active sites through disintegration of catalyst particles by the growing polymer phase. Ethylene content of the copolymer quickly decreased in the period of 30–90 s, meaning that the active centers activated in the reaction process have stronger ability of incorporating propylene than those activated at the very beginning. The copolymer samples were fractionated into two parts, namely n‐heptane soluble fraction (random copolymer) and insoluble fraction (segmented copolymer with high ethylene content). With continuation of the copolymerization, active centers producing the random copolymer chains increased much faster than active centers producing the segmented copolymer chains, and became the dominant centers after 120 s. Consequently, proportion of the soluble fraction sharply increased with time. All these results indicate that the active centers located on the external surface of catalyst particles are highly different from those buried inside the particles. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46030.  相似文献   

11.
Polyethylene hollow spheres with diameters of 0.4–2 mm were synthesized by a two‐step slurry polymerization in a single reactor with a spherical MgCl2‐supported Ziegler‐Natta catalyst activated by triethylaluminum, in which the first step was prepolymerization with 0.1 MPa propylene and the second step was ethylene polymerization under 0.6 MPa. The prepolymerization step was found necessary for the formation of hollow spherical particles with regular shape (perfectly spherical shape). The effects of adding small amount of propylene (propylene/ethylene < 0.1 mol/mol) in the reactor after the prepolymerization step were investigated. Average size of the polymer particles was increased, and the polymerization rate was markedly enhanced by the added propylene. Development of the particle morphology with polymerization time was also studied. The polymer particles formed by less than 20 min of ethylene polymerization showed hollow spherical morphology with thin shell layer. Most of the particles had ratio of shell thickness/particle radius smaller than 0.5. By prolonging the ethylene polymerization, the shell thickness/particle radius ratio gradually approached 1, and the central void tended to disappear. Central void in polymer particles formed from smaller catalyst particles disappeared after shorter time of polymerization than those formed from bigger catalyst particles. The shell layer of the hollow particles contained large number of macro‐, meso‐ and micro‐pores. The mesopore size distributions of four typical samples were analyzed by nitrogen adsorption–desorption experiments. A simplified multigrain model was proposed to explain the morphogenesis of the hollow spherical particles. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43207.  相似文献   

12.
In this work, high melt flow rate (MFR) polypropylene (HF‐PP) and polypropylene/poly(ethylene‐co‐propylene) in‐reactor alloys (HF‐PP/EPR) with MFR ≈ 30 g/10 min were synthesized by spherical MgCl2‐supported Ziegler–Natta catalyst with cyclohexylmethyldimethoxysilane (CHMDMS) or dicyclopentyldimethoxysilane (DCPDMS) as external donor (De). The effects of De on polymerization activity, chain structure, mechanical properties, and phase morphology of HF‐PP and HF‐PP/EPR were studied. Adding CHMDMS caused more sensitive change of the polymers MFR with H2 than DCPDMS, and produced PP/EPR alloys containing more random ethylene‐propylene copolymer (r‐EP) and segmented ethylene‐propylene copolymer (s‐EP). CHMDMS also caused formation of s‐EP with higher level of blockiness than DCPDMS. HF‐PP/EPR alloy prepared in the presence of DCPDMS exhibited higher flexural properties but lower impact strength than that prepared with CHMDMS. Toughening efficiency of the rubber phase was nearly the same in the alloys prepared using CHMDMS or DCPDMS as De, but stiffness of the alloy can be improved by using DCPDMS. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42984.  相似文献   

13.
The kinetics and mechanism of free radical polymerization of butyl acrylate (BA), using potassium peroxydisulfate (K2S2O8) as initiator in the presence of propiophenonebenzyldimethylammonium chloride (PPBDMAC) as phase transfer catalyst (PTC) has been studied. The reactions were carried out under inert, unstirred conditions and at a constant temperature of 60°C in cyclohexanone/water biphase media. The dependence of the rate of polymerization (Rp) on various experimental conditions such as different concentrations of monomer, initiator, phase transfer catalyst, varying acid and ionic strength, temperature, and volume fraction of aqueous phase were studied. The order with respect to monomer, initiator, and the phase transfer catalyst were found to be 1.5, 0.5, and 0.5, respectively. The rate of polymerization was independent of acid and ionic strength. Based on the results, a mechanism has been proposed for the polymerization reaction.  相似文献   

14.
A spherical TiCl4/MgCl2‐based catalyst was used in the synthesis of polyethylene/polypropylene/poly (ethylene‐co‐propylene) in‐reactor alloys by sequential homopolymerization of ethylene, homopolymerization of propylene, and copolymerization of ethylene and propylene in gas‐phase. Different conditions in the third stage, such as the pressure of ethylene–propylene mixture and the feed ratio of ethylene, were investigated, and their influences on the compositions, structural distribution and properties of the in‐reactor alloys were studied. Increasing the feed ratio of ethylene is favorable for forming random ethylene–propylene copolymer and segmented ethylene–propylene copolymer, however, slightly influences the formation of ethylene‐b‐propylene block copolymer and homopolyethylene. Raising the pressure of ethylene–propylene mixture results in the increment of segmented ethylene–propylene copolymer, ethylene‐b‐propylene block copolymer, and PE fractions, but exerts a slight influence on both the random copolymer and PP fractions. The impact strength of PE/PP/EPR in‐reactor alloys can be markedly improved by increasing the feed ratio of ethylene in the ethylene–propylene mixture or increasing the pressure of ethylene–propylene mixture. However, the flexural modulus decreases as the feed ratio of ethylene in the ethylene–propylene mixture or the pressure of ethylene–propylene mixture increases. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2481–2487, 2006  相似文献   

15.
黄凯  郑征  胡激江  冯连芳  李伯耿 《化工学报》2018,69(11):4693-4701
采用球形负载型Ziegler-Natta催化剂和单体组成周期性切换的丙丁淤浆共聚合技术,原位制备了聚丙烯/丙丁共聚物合金。将共聚动力学的矩模型与物料衡算相结合,首次建立了单体组成切换的共聚反应器模型。依据实验所得的丙烯实时消耗速率拟合得到模型参数,并模拟计算了不同单体组成切换频率下的聚合反应活性和聚合产物的组成。结果表明,模型能很好地描述各切换频率下丙烯的聚合速率曲线、催化聚合活性,以及合金中1-丁烯的总含量、丙丁无规共聚物的含量和“嵌段”共聚物的含量等。结果还显示,共聚过程中丙烯的脉冲进料有利于提高单体向活性中心的扩散,进而提高聚合速率和聚合活性。  相似文献   

16.
Two polyethylene/polypropylene/poly(ethylene‐co‐propylene) in‐reactor alloy samples with a good polymer particle morphology were synthesized by sequential multistage gas‐phase polymerization with a spherical Ziegler–Natta catalyst. The alloys showed excellent mechanical properties, including both toughness and stiffness. With temperature‐gradient extraction fractionation, both alloys were fractionated into five fractions. The chain structures of the fractions were studied with Fourier transform infrared, 13C‐NMR, and thermal analysis. The alloys were mainly composed of polyethylene, polyethylene‐b‐polypropylene block copolymer, and polypropylene. There also were minor amounts of an ethylene–propylene segmented copolymer with very low crystallinity and an ethylene–propylene random copolymer. The block copolymer fraction accounted for more than 44 wt % of the alloys. The coexistence of these components with different structures was apparently the key factor resulting in the excellent toughness–stiffness balance of the materials. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 640–647, 2005  相似文献   

17.
Henri J. Spijker 《Polymer》2005,46(19):8528-8535
Thymine and adenine monomers were synthesized and polymerized using ATRP in a controlled fashion. In addition a thymine functionalized block copolymer was prepared using ATRP, starting from a poly(ethylene glycol) macro initiator. Polymerization of adenine monomer in DMSO-d6 showed a significant increase in polymerization rate when polymeric thymine template was present, while thymine monomer did not show a polymerization rate enhancement. Varying the template to monomer ratio demonstrated that the polymerization rate increased even further if an excess of template was applied. Surprisingly, the addition of monomeric complementary moieties resulted in an even greater rate enhancement. These findings led to our conclusion that non-covalent interaction between adenine and thymine in DMSO-d6 protects the adenine monomer from interaction with the copper catalyst, thus resulting in a faster polymerization.  相似文献   

18.
A spherical TiCl4/MgCl2‐based catalyst was used in the synthesis of in‐reactor polyethylene/polypropylene alloys by polyethylene homopolymerization and subsequent homopolymerization of propylene in the gas phase. Different conditions in the ethylene homopolymerization stage, such as monomer pressure and polymerization temperature, were investigated, and their influences on the structure and properties of in‐reactor alloys were studied. Raising the polymerization temperature is the most effective way of speeding up polymerization and regulating the ethylene content of polyethylene (PE)/polypropylene (PP) alloys, but it will cause a greater increase in the PE‐b‐PP block copolymer fraction (named fraction D) than in the fraction of PP‐block‐PE in which the PP segments have low or medium isotacticity (named fraction A). Although changing ethylene monomer pressure could influence the ethylene content of PE/PP alloys slightly, it is an effective way of regulating the structural distribution. Reducing the monomer pressure will evidently increase fractions A and D. The mechanical properties of the alloys, including impact strength and flexural modulus, can be regulated in a broad range with changes in polymerization conditions. These properties are highly dependent on the amount, distribution, and chain structure of fractions A and D. The impact strength is affected by both fraction A and fraction D in a complicated way, whereas the flexural modulus is mainly determined by the amount of fraction A. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2136–2143, 2006  相似文献   

19.
采用微机在线控制的半连续烯烃聚合反应器,在加压条件下进行了球形TiCl4/MgCl2催化剂催化的丙烯气相聚合,测定了单体瞬时聚合速率等重要的动力学数据,考察了不同聚合条件对聚合动力学的影响,并用Flory-Huggins方程估算了聚合物非晶区中的单体浓度Cm.研究表明聚合速率与Cm成正比;丙烯聚合速率在反应一开始就迅速衰减,之后是缓慢的衰减.提出了一个n级衰减的丙烯气相聚合动力学模型,根据实验数据拟合得到了模型的各个参数,其中活性中心的衰减级数为2.5,气相聚合的表观增长活化能为77.1 kJ&#8226;mol-1.用该模型可以较好地模拟加压条件下的丙烯气相聚合动力学行为.  相似文献   

20.
Kinetics of free radical polymerization of methyl methacrylate using potassium peroxomonosulfate as initiator in the presence of benzyltributylammonium chloride (BTBAC) as phase transfer catalyst was studied. The polymerization reactions were carried out under nitrogen atmosphere and unstirred conditions at a constant temperature of 60°C in ethyl acetate/water bi-phase system. The role of concentrations of monomer, initiator, catalyst, temperature, acid and ionic strength on the rate of polymerization (Rp) was ascertained. The orders with respect to monomer, initiator and phase transfer catalyst were found to be 1.5, 0.5 and 0.5 respectively. The rate of polymerization (Rp) is independent of ionic strength and pH. Based on the kinetic results, a suitable mechanism is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号