首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Capillary rheometers have been widely used in the study of the rheological behavior of thermoplastics but their application to rubber has so far been limited. An investigation was therefore carried out to determine the effect of mastication and temperature on the rheological properties of natural rubber using a capillary rheometer. The flow of the rubber in the barrel of the capillary rheometer was observed at various test conditions such as die geometry, piston speed, and test temperature using layers of pigmented rubber compound, this involving the use of a split barrel system. It was found that the flow patterns in the barrel of the capillary rheometer used were very complex and were a function of piston displacement.  相似文献   

2.
Extrudate swell behavior of polystyrene (PS) and linear low‐density polyethylene (LLDPE) melts was investigated using a constant shear rate capillary rheometer. Two capillary dies with different design configurations were used, one being a single flow channel and the other being a dual flow channel. A number of extrudate swell related parameters were examined, and used to explain the discrepancies in the extrudate swell results obtained from the single and dual flow channel dies, the parameters including output rate and output rate ratio, power law index, wall shear rate, wall shear stress, melt residence time, pressure drop induced temperature rise, flow channel position relative to the barrel centerline, and the flow patterns. It was found in this work that the power law index (n value) was the main parameter to determine the output rate ratio and the extrudate swell between the large and small holes for the dual flow channel die: the greater the n value the lower the output rate ratio and thus decreased extrudate swell ratio. The differences in the extrudate swell ratio and flow properties for PS and LLDPE melts resulted from the output rate ratio and the molecular chain structure, respectively. The extrudate swell was observed to increase with wall shear rate. The discrepancies in the extrudate swell results from single and dual dies for a given shear rate were caused by differences in the flow patterns in the barrel and die, and the change in the melt velocities flowing from the barrel and in the die to the die exit. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1713–1722, 2003  相似文献   

3.
The effects of the actual diameters and diameter ratios of barrels and dies on the elastic swell and entrance pressure drop of natural rubber compounds in an extrusion capillary rheometer were investigated. Either the barrel diameter or the die diameter was altered so that different barrel‐diameter/die‐diameter (DB/DD) ratios were obtained, both the barrel and die diameters also being varied simultaneously. The extrudate swell and entrance pressure drop were dependent not only on DB/DD but also on the actual diameters used. For fixed DB/DD ratios, the change in the extrudate swell was linearly influenced by the entrance pressure drop at low actual barrel and die diameters (DB/DD = 20/4–30/7 mm/mm) but was associated with a change in the material viscosity at high barrel and die diameters (DB/DD = 35/7–40/8 mm/mm). When the die diameter was fixed, the relationship between the entrance pressure drop and the extrudate swell was linear up to a certain value of the barrel diameter greater than 30 mm. Beyond this critical barrel value, the relationship became nonlinear and associated with the shearing stress generated by the formation of semipluglike flow patterns and the residence time of the material. For a constant barrel diameter, the smaller the die diameter was, the greater the extrudate swell was because of the increases in the extensional deformation and wall shear rate coupled with a reduction in the material residence time. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1762–1772, 2002  相似文献   

4.
An experimental apparatus coupled with a rotating die system was especially designed and manufactured to study the rheological properties, flow patterns and swelling behavior of natural rubber (NR) compound for different shear rates and die rotating speeds at a test temperature of 110°C, the results being compared with those by the static capillary die. It was found that NR compound used exhibited psuedoplastic non‐Newtonian behavior. The rotation of the capillary die could reduce the extrusion load. The wall shear stress for any given shear rates increased with increasing die rotating speed. The fluctuation of the entrance pressure drop increased with increasing die rotating speed. The flow pattern development in the rotating‐die rheometer was different from that observed in the static die. The flow patterns in the rotating die were clearly unstable and contained two flow components which included axial flow along the barrel and circumferential flow at the die entrance. The size and shape of the axial and circumferential flows were more dependent on the piston displacement. It was found that the swelling ratio of the NR compound decreased with increasing die rotating speed. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers.  相似文献   

5.
In this study, the flow properties and die‐swell ratios (B's) of two kinds of rubber compounds (SI was a calcium carbonate filled natural rubber compound, and SII was a carbon‐black‐filled natural rubber/butadiene–styrene rubber/cis‐1,4‐butadiene rubber compound) in a short‐tube extrusion flow were measured by means of a capillary rheometer under test conditions with a temperature of 90°C and an apparent shear rate varying from 10 to 4000 s?1 to identify the effects of extrusion conditions on the rheological behavior of the materials and to estimate B. The shear flow roughly obeyed the power law, whereas B increased nonlinearly with increasing extrusion rate. Under the same shear rates, the viscosity of SII was higher than that of SI, whereas the values of B of SI were higher than those of SII. Furthermore, B of the rubber compounds was estimated by means of an extrudate swell equation published in a previous work. The results show that the predictions of B were close to the measured data from the experiments. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
This article proposes a new experimental technique to simultaneously measure radial die swell and velocity profiles of polystyrene melt flowing in the capillary die of a constant shear rate rheometer. The proposed technique was based on parallel coextrusion of colored melt‐layers into uncolored melt‐stream from the barrel into and out of the capillary die. The size (thickness) ratio of the generated melt layers flowing in and out of the die was monitored to produce the extrudate swell ratio for any given radial position across the die diameter. The radial velocity profiles of the melt were measured by introducing relatively light and small particles into the melt layers, and the times taken for the particles to travel for a given distance were measured. The proposed experimental technique was found to be both very simple and useful for the simultaneous and accurate measurement of radial die swell and velocity profiles of highly viscous fluids in an extrusion process. The variations in radial die swell profiles were explained in terms of changes in melt velocity, shear rate, and residence time at radial positions across the die. The radial die swell and velocity profiles for PS melt determined experimentally in this work were accurate to 92.2% and 90.8%, respectively. The overall die swell ratio of the melt ranged from 1.25 to 1.38. The overall die swell ratio was found to increase with increasing piston speed (shear rate). The radial extrudate swell profiles could not be reasoned by the shear rate change, but were closely linked with the development of the velocity profiles of the melt in the die. The die swell ratio was high at the center (~1.9) and low (~0.9) near the die wall. The die swell ratio at the center of the die reduced slightly as the piston speed was increased. Polym. Eng. Sci. 44:1960–1969, 2004. © 2004 Society of Plastics Engineers.  相似文献   

7.
气膜润滑剪切机头及其在短纤维增强胶管中的应用   总被引:4,自引:0,他引:4       下载免费PDF全文
气膜润滑是挤出时在胶料和口型壁之间形成一层很薄的空气膜,不仅可以降低流动阻力,提高挤出量,同时也可降低挤出膨胀。在短纤维增强胶管挤出中可以通过内芯旋转使短纤维沿周向取向以提高爆破强度,但也因内芯旋转使挤出物扭转造成挤出不稳定。利用气膜润滑技术设计制造的气膜润滑剪切机头,成功地解决了由于内芯旋转而产生的挤出扭转造成的挤出不稳定现象。通过流场分析计算,从理论上预测了利用气膜润滑消除物料旋转的可行性。介绍了用气膜润滑剪切机头制造短纤维增强胶管的实验结果。  相似文献   

8.
We investigate the rheological properties of a filler-reinforced rubber compound using a rotorless shear rheometer specially designed for rubber and a rotational rheometer with parallel-plate geometry. Our aim is to evaluate the effects of wall slip on both the oscillatory and steady shear modes of the rotational rheometer. The rheological measurements show that the slip generally does not affect the oscillatory shear but does exist in the steady shear flow and tends to make the measured shear viscosity lower than the true value. Besides, we extend the investigation into engineering applications. The extrusion die for a given extrudate profile is obtained using a finite-element model in which the wall slip is considered as a boundary condition. To validate the die design, an extrusion experiment is carried out and the results confirm that, for filled elastomers, it is necessary to consider the effect of wall slip in the extrusion die design.  相似文献   

9.
The effect of die wall temperature on the extrudate swell of polymer melts flowing through dies with single and dual circular channels was studied. Extrudate swell was measured at constant flow rates using an Instron capillary rheometer with a modified die section. It was found that under isothermal conditions, extrudate swell plotted against the average wall shear stress gave rise to a temperature independent correlation for polystyrene. Under non-isothermal conditions, such a correlation did not exist, which might be due to the change of wall shear stress in the axial direction. The extrudate swell in the non-isothermal cases can be better correlated with the wall shear stress at die exit. For the two-hole die, changes of die wall temperature varied both the flow rate ratio and the extru date swell ratio. The latter is, however, much less sensitive to the die wall temperature than the former.  相似文献   

10.
An experimental and theoretical study is presented of extrudate swell from short capillary and slit dies. The polymer melts studied were polystyrene and polypropylene. The swell from slit dies is greater than the swell from capillaries. Decreasing die entry angle for capillary dies decreases swell. The argument is made that elongational How existing in the die entry region and for short dies determines extrudate swell. Dimensional analysis arguments are used to relate extrudate swell to a Weissenberg number based on elongational flow at the die entrance and the detailed die geometry. Correlations are developed. The theoretical study is based on unconstrained elastic recovery following elongational How through the die entrance region.  相似文献   

11.
This article investigates the radial extrudate swell and velocity profiles of polystyrene melt in a capillary die of a constant shear‐rate extrusion rheometer, using a parallel coextrusion technique. An electro‐magnetized capillary die was used to monitor the changes in the radial extrudate swell profiles of the melt, which is relatively novel in polymer processing. The magnetic flux density applied to the capillary die was varied in a parallel direction to the melt flow, and all tests were performed under the critical condition at which sharkskin and melt fracture did not occur in the normal die. The experimental results suggest that the overall extrudate swell for all shear rates increased with increasing magnetic flux density to a maximum value and then decreased at higher densities. The maximum swelling peak of the melt appeared to shift to higher magnetic flux density, and the value of the maximum swell decreased with increasing wall shear rate and die temperature. The effect of magnetic torque on the extrudate swell ratio of PS melt was more pronounced when extruding the melt at low shear rates and low die temperatures. For radial extrudate swell and velocity profiles, the radial swell ratio for a given shear rate decreased with increasing r/R position. There were two regions where the changes in the extrudate swell ratio across the die diameter were obvious with changing magnetic torque and shear rate, one around the duct center and the other around r/R of 0.65–0.85. The changes in the extrudate swell profiles across the die diameter were associated with, and can be explained using, the melt velocity profiles generated during the flow. In summary, the changes in the overall extrudate swell ratio of PS melt in a capillary die were influenced more by the swelling of the melt around the center of the die. Polym. Eng. Sci. 44:2298–2307, 2004. © 2004 Society of Plastics Engineers.  相似文献   

12.
ABSTRACT

The rheological characteristics of short Nylon-6 fiber reinforced styrene butadiene rubber (SBR) were studied using a capillary rheometer. The study was done with respect to the effect of shear rate, fiber concentration, and temperature on shear viscosity and die swell. All the melts showed pseudoplastic nature, which decreased with increasing temperature. Shear viscosity increased in the presence of fibers. Introduction of fiber reduces the temperature sensitivity of the rubber matrix. A reduction in die swell was found in presence of fibers.  相似文献   

13.
EPDM橡胶的流变特性实验研究   总被引:1,自引:0,他引:1  
赵建才 《弹性体》2006,16(4):11-13
为了研究橡胶熔体流变性能对其加工成型的影响,利用毛细管流变仪对三元乙丙橡胶(EPDM)的流变特性进行了实验研究。实验结果表明:EPDM橡胶在毛细管挤出时,剪切速率对剪切应力、剪切粘度和挤出胀大的影响最大;挤出温度对三者有一定的影响;在长径比相同时,毛细管半径对剪切应力和剪切粘度几乎没有影响,但对挤出胀大影响较大。  相似文献   

14.
Experimental investigations were performed to see how the die exit geometry and the extrusion velocity influence on extrudate swell and melt fracture for several polymer melts [low-density polyethylene, styrene-butadiene rubber (SBR) and SBR/HAF (carbon black) compound]. Four different types of die exit geometry were considered; 0° (symmetric. usual capillary die), and 30°, 45° and 60° (asymmetric dies) were chosen for the die exit angle. Extrudate diameters were measured without draw-down under isothermal condition. Polymer melts were extruded into an oil that has the same density and temperature as those of the extrudate. Extrudate swells from dies with different diameters were correlated with volumetric flow rates. It was observed that the extrudate swell increases with increasing volumetric flow rate and exhibits through a minimum value at about 45° die exit angle. As to the fracture phenomena, it was observed that the critical shear for the onset of melt fracture increases with the increasing die exit angle up to 45°. However, for 60° die exit angle, the onset of melt fracture is again similar to that of 0° exit angle.  相似文献   

15.
A study on the melt elasticity behavior and extrudate characteristics of melts of rigid poly(vinyl chloride), PVC, and rigid poly(vinyl chloride)/epoxidized natural rubber (ENR) miscible blends were conducted. Extrusion studies were carried out in a capillary rheometer and examinations of the surface characteristics of the extrudate were made by taking photomicrographs in a scanning electron microscope. The anomalous behavior in the die swell ratio of rigid PVC arising from the particle agglomerates continued in its blends up to 50 wt% composition of ENR. Temperature independence for high ENR blends was noted for the principal normal stress difference and elastic shear modulus, when shear stress was held constant. Recoverable shear strain and die swell ratio behaved identically in terms of blend composition and processing temperature. Factors which control the extrudate distortion and melt fracture of the melts of rigid PVC/ENR systems were fusion of particle agglomerates and strength of melts. Diamond cavitations were typical of the extrudate surface of PVC melts as those of the fracture surface of the tensile failure of PVC. Conditions to obtain a smooth extrudate surface of rigid PVC melts in blends with ENR have been found to be the low ENR content, low shear rate, or stress and high processing temperature.  相似文献   

16.
The effect of varying the die entrance angle and the die length on extrudate swell and on the onset of extrudate distortion in capillary extrusion has been studied. Using theory from the literature, we have analyzed the contribution to the total pressure drop from the elongational and shear deformation in the entrance region, and from the capillary pressure drop in the land region of the die. From the contribution of the elongational deformation, we obtained an estimate for the elongational viscosity of the polymer. The same analysis was used to study the influence of the die geometry on the stick-slip instability. It is found that the elongational component at the inlet region mainly influences the extrudate distortions. The onset of the stick-slip instability occurs within 10% at a wall stress τw of 0.3MPa, where τw is calculated from expressions assuming fully developed flow. The variation around this average value is systematic with changes in die geometry, and the observed variations are probably due to the non-homogeneous pressure field in the die. We also propose a model for predicting extrudate swell. Input to the model are material parameters obtainable from oscillatoric measurements of the loss and storage modulus and residence times calculated from the geometry of the die. The swell model includes a fitting parameter that sets the overall scale of the swell.  相似文献   

17.
The extrudate swell ratio of five different thermoplastic melts flowing in a constant shear rate rheometer having a capillary die with and without application of magnetic field was studied. The effects of the magnetic flux direction and density, die temperature, and wall shear rate on the extrudate swell and flow properties were investigated. The experimental results suggested that an increasing wall shear rate increased the swelling ratio for the polystyrene (PS), LLDPE, and PVC melts, but the opposite effect was observed for the ABS and PC melts. The extrudate swell ratio for the PS, ABS, PC, and LLDPE melts decreased with increasing die temperature, the effect being reversed for the PVC melt. Thermoplastic melts having high benzene content in the side‐chain and exhibiting anisotropic character were apparently affected by the magnetic field, the extrudate swell ratio increasing with magnetic flux density. The effect of the magnetic field on the extrudate swell ratio decreased in the order of PS → ABS → PC. The extrudate swell ratio for the co‐parallel magnetic field system was slightly higher than that for the counter‐parallel magnetic field system at a high magnetic flux density. POLYM. ENG. SCI., 47:270–280, 2007. © 2007 Society of Plastics Engineers.  相似文献   

18.
The rheological characteristics of short nylon-6 fiber-reinforced acrylonitrile butadiene rubber (NBR) were studied with respect to the effect of shear rate, fiber concentration, and temperature on shear viscosity and die swell using a capillary rheometer. All the melts showed pseudoplastic nature, which decreased with increasing temperature and in the presence of short fibers. Shear viscosity was increased in the presence of fibers. Die swell was reduced in the presence of fibers. Relative viscosity of the gum compound was less than one at all shear rates and temperatures. Activation energy of flow of the composite-containing bonding agent was higher at higher fiber loading and higher shear rates. Die swell increased marginally in the presence of the bonding agent.  相似文献   

19.
The melt Theological behavior of nitrile rubber (NBR)/ethylene-vinyl acetate (EVA) copolymer blends was studied with special reference to the effect of the blend ratio, cross-linking systems, and shear rate using a capillary rheometer. At a given shear stress at 90°C, the viscosities of the blends vary slightly with composition. The effect of cross-linking systems [viz., sulfur (S), peroxide (DCP) and mixed (S+DCP) systems] on the viscosity of NBR/EVA blends is negligible. The melt viscosity of the blends decreases with increasing shear rate, showing pseudoplastic behavior. The flow behavior index values also support the pseudoplastic nature of these blends. Various theoretical models were used to predict the melt viscosity of the blends. Parameters such as die swell, principal normal stress difference, recoverable shear strain, and shear modulus were calculated to characterize the melt elasticity of these blends. The melt elasticity of the system was increased by the addition of NBR to EVA. The extrudate deformation at different shear rates was also studied. It was observed that as the shear rate increases, the extrudate surface exhibits a higher degree of deformation. The morphology of the extrudates of the blends at different shear rates has been examined by a scanning electron microscope. The morphology was found to be dependent on the blend ratio and shear rate.  相似文献   

20.
An experimental study was carried out to study and characterize the capillary extrudate swell and parison swell behavior in extrusion blow molding of two commercial blow molding grade high density polyethylene resins. The capillary extrudate swell behavior of these resins were determined employing a capillary rheometer and a special thermostatting chamber. Parison swell behavior was determined using an Impco A13-R12 reciprocating screw blow molding machine in conjunction with cinematography and pinch-off. The experimental conditions under which capillary extrudate and parison swell data can be related are elucidated. Excellent agreement is found between the area swell values determined on the basis of capillary and parison swell experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号