共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a new scheme to estimate the directions-of-arrival (DOAs) of mixed coherent and uncorrelated targets exploiting a collocated multiple-input multiple-output (MIMO) radar with transmit/receive coprime arrays. In the proposed scheme, the DOAs of the uncorrelated targets are first estimated using subspace-based methods, whereas those of the coherent targets are resolved using Bayesian compressive sensing. Compared with the previous works, the proposed approach achieves improved DOA estimation accuracy with a flexible coprime array configuration and may resolve more targets than the number of coarray elements. Theoretical analysis and simulation results validate the effectiveness of the proposed technique. 相似文献
2.
郑威陈德昶刘红星 《数据采集与处理》2017,32(3):588-594
在Quinn算法和插值迭代算法(A&M算法)的基础上,提出了一种改进的离散傅里叶变换(Discrete Fourier transform, DFT)插值频率估计算法。该算法首先通过Quinn算法估计出1个频率误差作为迭代估计算法的误差初值,然后用迭代算法精确估计频率误差。改进后的算法可以有效减少迭代次数,因此同时具有Quinn算法的高效率和A&M插值迭代算法的高精度。为了提高算法在DSP处理器上的运行效率,本文还对算法在DSP上的实现提出了一种优化方法,有利于该算法的实时性应用。仿真结果表明该算法在频率估计精度、实时运算效率以及对噪声的抗干扰性能上均获得了提升。 相似文献
3.
调频连续波(Frequency modulated continuous wave,FMCW)雷达中的频率测量精度直接决定了测距的精度,但实际应用中频率估计受到负频谱和多目标带来的多频信号的干扰,误差较大。本文基于常用的单频频率估计方法Orguner算法提出了一种新的多频频率估计方法,并利用迭代逐步消除负频谱和其他频率带来的干扰。该方法只需要对信号进行离散傅里叶变换(Discrete Fourier transform,DFT),进而取各频率点附近的3个采样值实现精确的频率估计。仿真结果证明,本文提出的方法无论在无噪声条件下还是在高斯白噪声条件下均能带来频率估计精度的提升,且无需加窗处理,相比传统方法拥有更低的计算复杂度。 相似文献
4.
相位差是传感器信号处理中重要的检测参数。针对相位差高精度估计要求,在阐述DFT相位差估计原理基础上,分析了影响估计精度的主要因素,推导出估计方差与信噪比、采样长度、频率偏差及对称窗型窗长的具体关系,并给出了满足精度要求的信噪比、采样长度和和频率偏差条件。提出一种校正谱泄漏的相位差估计方法,先通过比值法计算出频率偏差,然后考虑负频率泄漏影响进行相位差估计,校正了短程和长程两类谱泄漏影响,给出了加矩形窗或Hanning窗的估计式和方法步骤。实验结果验证了估计精度分析及本文方法性能,科氏流量计应用实验表明了方法的工程可行性和实用价值。 相似文献
5.
基于FFT的多个空间信号波达方向的估计算法 总被引:1,自引:0,他引:1
本文提出了一种与传统算法完全不同的多个空间窄带信号波达方向的估计算法。该算法通过对阵列输出数据的快速傅立叶变换(FFT),建立了FFT频谱与波达方向角的关系;利用这一关系并通过对FFT谱峰的搜索,从而实现了对波达方向的快速估计。计算机模拟实验验证了算法的可行性。 相似文献
6.
7.
The sliding discrete Fourier transform provides an alternative to the FFT, permitting a custom choice of frequency decomposition which outputs an update after each input sample. The technique relies on the application of the Fourier shift property, and is recursive by nature. This work investigates the error performance of alternative techniques (SDFT; gSDFT; mSDFT, rSDFT; and Douglas and Soh algorithms) under both floating point and fixed point arithmetic constraints. The results highlight that the sliding discrete Fourier transform with error correction provides consistent error performance over a range of test cases, and indicates the limitations applicable to all techniques. 相似文献
8.
正弦波频率估计的修正Rife算法 总被引:13,自引:0,他引:13
分析了Rife算法的性能,指出当信号频率位于离散傅里叶变换(Discrete Fourier Transform,DFT)两个相邻量化频率点的中心区域时,Rife算法精度很高,其均方根误差接近克拉美-罗限(Cramer-Rao Lower Bound,CRLB),但当信号频率位于量化频率点附近时,Rife算法精度降低。本文提出了一种修正Rife(M-Rife)算法,通过对信号进行频移,使新信号的频率位于两个相邻量化频率点的中心区域,然后再利用Rife算法进行频率估计。仿真结果表明本算法性能不随被估计信号的频率分布而产生波动,整体性能优于牛顿迭代法(一次迭代)。接近二次迭代,在低信噪比条件下不存在发散问题,性能比牛顿迭代稳定。本算法易于硬件实现。 相似文献
9.
离散Hartley变换是一种有用的实值正交变换。文中对其快速算法进行研究,首先介绍利用算术傅里叶变换(AFT)计算离散傅里叶变换(DFT)可使其乘法计算量仅为O(N),然后文章根据这一特点,分析离散Hartley变换(DHT)的结构特征,通过DFT将AFT和DHT建立了直接联系,提出了一种新的快速DHT算法。算法的计算复杂度能够达到线性O(N),且算法结构简单,公式统一且易于实现,并与其他快速算法进行了比较,分析可知在数据长度不是2的幂次方时,文中提出的算法的计算时间明显比其他算法的计算时间要小。实验结果也验证了文中算法的有效性,从而为DHT的快速计算开辟了新的思路和途径。 相似文献
10.
针对余弦振动信号的频率高精度估计需求,提出了一种基于频差修正的频率估计算法.对连续时间信号进行采样后,使用Candan算法估计出频差,运用频差对信号的频率进行修正.对修正后的信号使用Liang算法再次进行频偏估计.最后将2次估计得到的频率值相加求得最终估计频率.通过频差修正,避免了Candan算法因插值方向错误和Liang算法自身特点导致估计精度降低的问题,虽然增加了计算量,但并不影响信号实时处理.仿真结果表明:在相对频偏为任意值的情况下,改进算法的频率估计均方误差接近克拉美罗下限(CRLB),性能优于现有频率估计算法. 相似文献
11.
12.
The Discrete Fourier Transform (DFT) has played a fundamental role for signal analysis. A common application is, for example, an FFT to compute a spectral decomposition, in a block by block fashion. However, using a recursive, discrete, Fourier transform technique enables sample-by-sample updating, which, in turn, allows for the computation of a fine time–frequency resolution. An existing spectral output is updated in a sample-by-sample fashion using a combination of the Fourier time shift property and the difference between the most recent input sample and outgoing sample when using a window of finite length. To maintain sampling-to-processing synchronisation, a sampling constraint is enforced on the front–end hardware, as the processing latency per input sample will determine the maximum sampling rate. This work takes the recursive approach one step further, and enables the processing of multiple samples acquired through oversampling, to update the spectral output. This work shows that it is possible to compute a fine-grained spectral decomposition while increasing usable signal bandwidths through higher sampling rates. Results show that processing overhead increases sub-linearly, with signal bandwidth improvement factors of up to 6.7× when processing 8 samples per iteration. 相似文献
13.
In this paper, we construct a novel coarray named as the difference and sum (diff–sum) coarray by exploiting an improved Conjugate Augmented MUSIC (CAM) estimator, which utilizes both the temporal information and the spatial information. The diff–sum coarray is the union of the difference coarray and the sum coarray. When taking the coprime array as the array model, we find that the elements of the sum coarray can fill up all the holes in the difference coarray. Besides, the sum coarray contains bonus uniform linear array (ULA) segments which extend the consecutive range of the difference coarray. As a result, the consecutive lags of the diff–sum coarray are much more than those of the difference coarray. For analysis, we derive the hole locations and consecutive ranges of the difference set and the sum set, discuss the complementarity of the two sets, and provide the analytical expression of the diff–sum virtual aperture. Simulations verify the effectivity of the improved method and show the high DOF of the diff–sum coarray. 相似文献
14.
15.
16.
The paper reveals the time-frequency symmetric property of the weighted-type fractional Fourier transform (WFRFT) by investigating the original definition of the WFRFT, and proposes a discrete algorithm of the WFRFT based on the weighted discrete Fourier transform (WDFT) algorithm with constraint conditions of the definition of the WFRFT and time-domain sampling. When the WDFT is considered in digital computation of the WFRFT, the Fourier transform in the definition of the WFRFT should be defined in frequency (Hz) but not angular frequency (rad/s). The sampling period Δt and sampling duration T should satisfy Δt = T/N = 1/N(1/2) when N-point DFT is utilized. Since Hermite-Gaussian functions are the best known eigenfunctions of the fractional Fourier transform (FRFT), digital computation based on eigendecomposition is also carried out as the additional verification and validation for the WFRFT calculation. 相似文献
17.
一种基于非均匀离散傅立叶变换的鲁棒音频水印算法 总被引:7,自引:0,他引:7
基于离散傅立叶变换(DFT)的音频水印算法对常规信号处理操作具有较高的鲁棒性,然而,在DFT域的固定频率点嵌入水印信息易受频域攻击,导致此类水印算法存在安全隐患.为进一步说明这种安全隐患,本文描述了一种新颖的频域攻击方法,仿真结果表明采用该方法可以在不影响含水印音频信号听觉感知质量的条件下有效去除水印信息.针对上述问题,本文提出了一种基于非均匀离散傅立叶变换(NDFT)的鲁棒音频水印算法.该算法基于NDFT可以任意选择频率点的特性,利用混沌映射随机选取NDFT域的水印嵌入频率点,以实现水印嵌入位置的随机性.此外,引入另一个混沌映射置乱加密待嵌入的水印信息以提高算法抵抗拷贝攻击的能力.理论分析和实验结果表明该算法不仅具有抗常规信号处理操作高的鲁棒性,而且能够抵抗频域的恶意攻击,大的密钥空间保证了系统高安全性. 相似文献
18.
Sultan Aldirmaz Lutfiye Durak-Ata Aydin Akan Luis F. Chaparro 《Digital Signal Processing》2013,23(5):1747-1755
Discrete evolutionary transform (DET) has usually been applied to signals in a blind-way without using any parameters to characterize the signal. For this reason, it is not optimal and needs improvement by using some information about the signal. In this paper, we propose an improvement for the discrete evolutionary transform in order to obtain a sparse representation and redefine the generalized time-bandwidth product optimal short-time Fourier transform as a special case of it. In case of linear FM-type signals, the optimized kernel function of the transform is determined according to signal parameters including the instantaneous frequency. The performance of the adaptive-DET is illustrated on three distinct cases. In case of multi-component LFM signals, when the concentration of the proposed distribution is compared to the ordinary sinusoidal-DET, the improvement is computed as 28% in terms of the ratio of norms. Furthermore we define a new and a general class of distribution functions named as the short-time generalized discrete Fourier transform (ST-GDFT) which is a larger set of signal representations including the adaptive-DET. 相似文献
19.
自适应滤波的研究新方向 总被引:8,自引:0,他引:8
概述了自适应滤波的研究进展,回顾了时域和变换域自适应滤液方法,并引出了基于离散小波变换(DWT)的自适应滤波。变换城自适应滤波大大改善了时域自适应滤波的速率,而小波变换由于具有多分辨和时频局部化特性,在时变信号和快速变化的信号自适应滤波方面个有广阔的应用前景,是未来自适应滤波发展的方向。 相似文献
20.
As the fractional Fourier transform has attracted a considerable amount of attention in the area of optics and signal processing, the discretization of the fractional Fourier transform becomes vital for the application of the fractional Fourier transform. Since the discretization of the fractional Fourier transform cannot be obtained by directly sampling in time domain and the fractional Fourier domain, the discretization of the fractional Fourier transform has been investigated recently. A summary of discretizations of the fractional Fourier transform developed in the last nearly two decades is presented in this paper. The discretizations include sampling in the fractional Fourier domain, discrete-time fractional Fourier transform, fractional Fourier series, discrete fractional Fourier transform (including 3 main types: linear combination-type; sampling-type; and eigen decomposition-type), and other discrete fractional signal transform. It is hoped to offer a doorstep for the readers who are interested in the fractional Fourier transform. 相似文献