首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Para-phenylenediamine (PD) was chemically attached to depolymerized natural rubber by a photochemical reaction. The rubber bound PD was characterized by TLC, 1H-NMR, IR, and TGA. The efficiency and permanence of the bound PD were compared with conventional antioxidants in NBR vulcanizates. The rubber bound PD was found to be less volatile and more resistant to water and oil extraction. The vulcanizates showed improved aging resistance in comparison to vulcanizates containing conventional antioxidants. The liquid rubber bound antioxidant reduces the amount of plasticizer required for compounding. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
A novel filling antioxidant (Lig-g-RT) to improve the mechanical properties and antiaging performance of styrene-butadiene rubber (SBR) composites was prepared by grafting antioxidant intermediate p-aminodiphenylamine (RT) on the surface of lignin via the linkage of silane coupling agent. Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) measurements confirmed that RT was successfully grafted on the surface of lignin to produce the functionalized Lig-g-RT which shows a better thermal stability than lignin. Compared with SBR/lignin composite, the SBR/Lig-g-RT composite using latex co-precipitation method exhibits a much better filler dispersion, which contributes to the maintain of the physical mechanical properties of SBR vulcanizates. Moreover, the SBR/Lig-g-RT vulcanizate exhibits less chemical crosslink concentration and higher entanglement density than SBR/lignin vulcanizate according to the Mooney–Rivlin model analysis. In addition, the stabilizing effect of lignin/Lig-g-RT on the carbon-black filled SBR vulcanizates is comparable with that of commercial antioxidant N-1,3-dimethylbutyl-N′-phenyl-p-phenylenediamine (4020), especially the SBR vulcanizate filled with 10 phr Lig-g-RT obtains the optimum thermo-oxidative aging properties. This functionalized Lig-g-RT not only provides an intramolecular synergistic antiaging effect for SBR vulcanizates and an improvement of filler dispersion, but greatly extends the comprehensive utilization of industrial lignin.  相似文献   

3.
《Polymer Composites》2017,38(7):1241-1247
To restrain the migration and extractability of the antioxidants and improve the dispersion of nanosilica in natural rubber (NR), antioxidant 2‐tert‐butyl‐6‐(3‐tert‐butyl‐2‐hydroxy‐5‐methylbenzyl)‐4‐methyphenyl acrylate (GM) functionalized nanosilica was prepared using antioxidant coupling agent (KH590‐GM) as functional modifier, which was first synthesized through thiol‐ene reaction between the mercapto group of γ‐mercaptopropyl trimethoxysilane (KH590) and the CC double bonds of antioxidant GM. Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance confirmed the structure of KH590‐GM and GM functionalized nanosilica. Thermogravimetry analysis indicated that the grafting rate of GM functionalized nanosilica reached 13.4%, and the antioxidant had good thermal stability. Scanning electron microscope and mechanical properties measurement showed GM functionalized nanosilica was dispersed uniformly in NR vulcanizates, and helpful for the increase of the tensile strength and tensile stress of NR vulcanizates. Based on the study of the antioxidative behavior and extraction resistance of the NR vulcanizates, it was found that in contrast to NR vulcanizates with GM, the ageing coefficient and oxidation induction time of that with GM functionalized nanosilica increased to 0.66 and 39 min from 0.58 and 30 min, respectively. Furthermore, the NR vulcanizates with GM functionalized nanosilica also exhibited excellent extraction resistance. POLYM. COMPOS., 38:1241–1247, 2017. © 2015 Society of Plastics Engineers  相似文献   

4.
Migration behaviors of antiozonants in carbon black‐filled rubber vulcanizates with different rubber compositions of natural rubber (NR), styrene–butadiene rubber (SBR), and butadiene rubber (BR) were studied at constant temperatures of 40–100°C and outdoors. Three single rubber‐based vulcanizates, three biblends, and three triblends were used. N‐Phenyl‐N′‐isopropyl‐p‐phenylenediamine (IPPD) and N‐phenyl‐N′‐(1,3‐dimethylbutyl)‐p‐phenylenediamine (HPPD) were employed as antiozonants. Migration rates of the antiozonants became faster with increasing the temperature. The order of the migration rates in the single rubber‐based vulcanizates was BR > NR > SBR. The migration rates in the vulcanizates containing SBR, on the whole, increased with decreasing the SBR content, while those in the vulcanizates containing BR decreased with decreasing the BR content. Difference in the migration behaviors of the antiozonants depending on the rubber composition was explained both by the intermolecular interactions of the antiozonants with the matrix and by interface formed between dissimilar rubbers in the blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 237–242, 2001  相似文献   

5.
The rubber antioxidant N‐(4‐anilinophenyl) methacrylamide (NAPM) was synthesized by a two‐step reaction using thionyl chloride (SOCl2) with methacrylic acid (MAA) and consequently 4‐aminodiphenylamine (ADPA) as precursors. NAPM was characterized by IR, 1H NMR and elemental analysis. Thermal stability, aging property of NAPM and mechanical properties of natural rubber (NR) vulcanizates containing NAPM were investigated and compared with two other commercial antioxidants N‐isopropyl‐N′‐phenyl‐p‐phenylene diamide (4010NA) and N‐(1, 3‐dimethyl butyl)—N′‐phenyl‐p‐phenylene diamide (4020). It was found that NAPM was an effective antioxidant with a better thermal stability and higher antiaging resistance than unreactive antioxidants 4010NA and 4020. And unsaturation level of NR vulcanizates containing NAPM was lower than that of 4010NA and 4020. Moreover, an antiaging resistant mechanism of a surface reaction between NAPM and cis‐1, 4‐polyisoprene in NR was proposed to explain the better properties of NAPM based on the IR and SEM analyses. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
A two‐roll mill machine was used for the grafting of p‐aminophenol (pAP) onto natural rubber (NR). The prepared NR graft p‐aminphenol (NR‐g‐pAP) was characterized by 1H NMR and IR spectroscopy techniques. The goal of this article is to study the effect of commercial antioxidants, N‐phenyl‐N′‐(1,3‐dimethylbutyl)‐p‐phenylenediamine (6PPD) and N‐phenyl‐N′‐isopropyl‐p‐phenylenediamine (IPPD), and the prepared NR‐g‐pAP, on the mechanical properties of acrylonitrile–butadiene (NBR) vulcanizates, the fluid compatibility of NBR vulcanizates, the hydraulic brake and clutch fluid dot, the diffusion out for NBR vulcanizate components, and the compression recovery of NBR vulcanizates. This study indicates that the NBR copolymer vulcanizate which contains the prepared NR‐g‐pAP has good protection against mechanical stress and the diffusion out of NBR vulcanizate components. The 6PPD and the prepared NR‐g‐pAP ameliorates the fluid compatibility of the oil seals, which is based on NBR as elastomer, and the hydraulic brake and clutch fluid dot. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
The grafting of ADPEA onto natural rubber was executed with UV radiation. Benzoyl peroxide was used to initiate the free‐radical grafting copolymerization. Natural rubber‐graftN‐(4‐aminodiphenylether) acrylamide (NR‐g‐ADPEA) was characterized with an IR technique. The ultrasonic velocities of both longitudinal and shear waves were measured in thermoplastic discs of NBR vulcanizates as a function of aging time. Ultrasonic velocity measurements were taken at 2 MHz ultrasonic frequency using the pulse echo method. We studied the effect of aging on the mechanical properties and the swelling and extraction phenomena for acrylonitrile–butadiene copolymer (NBR) vulcanizates, which contained the prepared NR‐g‐ADPEA and a commercial antioxidant, N‐isopropyl‐N′‐phenyl‐p‐phenylenediamine. The prepared antioxidant enhanced both the mechanical properties of the NBR vulcanizates and the permanence of the ingredients in these vulcanizates. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
The effects of crosslink structures on the dynamic mechanical properties (DMPs) of unfilled and carbon black N330‐filled natural rubber (NR) vulcanizates cured with conventional (CV), semiefficient (SEV), and efficient (EV) cure systems and having about the same total crosslink densities were investigated before and after aerobic and anaerobic aging at 100°C. The three unfilled NR vulcanizates cured with the CV, SEV, and EV systems had about the same mechanical loss factor (tan δ) values at about 0°C but showed some apparent differences in the tan δ values in the order EV > SEV > CV at relatively high temperatures of 40–80°C before aging. However, N330‐filled NR vulcanizates gave higher tan δ values than the unfilled vulcanizates and showed little effect of the crosslink types on the tan δ at different temperatures over the glass‐transition temperature (Tg) before aging. Aerobic heat aging increased the Tg and tan δ values of the vulcanizates over a wide range of temperatures from ?80 to 90°C that was mainly due to the changes in the total density and types of crosslinks. The unfilled vulcanizates cured with the CV system showed the greatest change in DMP because of their poor resistance to heat aging. Aerobic heat aging of NR vulcanizates caused a more significant change in the DMP than anaerobic heat aging because of the dominant effect of the oxidative degradation during aerobic heat aging on the main‐chain structure, crosslink structures, and DMPs of the vulcanizates. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 710–718, 2001  相似文献   

9.
The synthesis of N‐(4‐aminodiphenylmethane) acrylamide (ADPMA) was performed through the reaction of 4,4′‐diaminodiphenyl methane and acryloyl chloride in the presence of triethyl amine. The grafting of ADPMA onto natural rubber was executed with UV radiation. Benzoyl peroxide was used to initiate the free‐radical grafting copolymerization. Natural rubber‐graftN‐(4‐aminodiphenyl methane) acrylamide (NR‐g‐ADPMA) was characterized with an IR technique. We studied the effect of aging on the mechanical properties and the swelling and extraction phenomena for acrylonitrile–butadiene copolymer (NBR) vulcanizates, which contained the prepared NR‐g‐ADPMA and a commercial antioxidant, N‐isopropyl‐N′‐phenyl‐p‐phenylenediamine. The prepared antioxidant enhanced both the mechanical properties of the NBR vulcanizates and the permanence of the ingredients in these vulcanizates. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 843–849, 2006  相似文献   

10.
Abstract

Oxygen absorption in the induction period of polyethylene oxidation inhibited by a strong amine antioxidant N-phenyl-N-cyclohexyl-p-phenylenediamine (PCHA) in the temperature range of from 200°C to 230°C is investigated.

It is found that the rate of O2 absorption during the induction period in the presence of antioxidant varies in the range of from 2 × 10?6 to 2 × 10?5 mol/kg (210°C).

It is also stated that the main method of antioxidant consumption during the induction period consists of its direct oxidizing by molecular oxygen. The rapid oxidation of the polymer is shown to begin after the current antioxidant concentration reduction to the critical value.

Kinetic parameters of the oxidation reaction in a wide range of initial antioxidant concentration are determined.  相似文献   

11.
Change of crosslink density of natural rubber (NR) vulcanizates by thermal ageing at 60 °C has been studied under swollen conditions in solvents to investigate the influence of internal strain applied to the vulcanizate on the crosslink density change. The internal strain was controlled by swelling with various solvents such as n‐hexane, toluene, tetrahydrofuran (THF), methanol and water. The order of degree of the swelling is toluene ≈ THF > n‐hexane > methanol > water. The influence of curing system has been investigated with the vulcanizates cured by the conventional and EV cure systems. After thermal ageing, the apparent crosslink densities of the swollen vulcanizates in n‐hexane, toluene and THF decrease irrespective of the cure systems, while that of the swollen vulcanizate in water increases. For the swollen vulcanizates in methanol, the apparent crosslink density of the vulcanizate with the conventional cure system after thermal ageing increases while that of the vulcanizate with the EV cure system decreases. The decrement of the apparent crosslink density of the vulcanizate after thermal ageing becomes larger and larger upon increasing the internal strain. © 2001 Society of Chemical Industry  相似文献   

12.
Meta‐pentadecenyl phenol, a nonisoprenoid phenolic lipid, is a renewable agricultural resource and also a byproduct of the cashew industry; it is popularly known as cardanol. This study throws light on the grafting of cardanol, which has been established as a multifunctional additive for natural rubber, onto the main‐chain backbone of styrene–butadiene rubber (SBR), a synthetic polymer used to imbibe the multifunctional properties of the former, such as those of a plasticizer, curing promoter, process aid, and antioxidant, into the latter. The grafting was carried out in the solution stage on a trial basis with a peroxide catalyst, and all of the grafting parameters were optimized with a Taguchi methodology. The grafting of cardanol onto the SBR backbone was successfully confirmed by UV–visible spectroscopy, Fourier transform infrared spectroscopy, and NMR analysis. Thermal analysis of the cardanol‐grafted styrene–butadiene rubber (C‐g‐SBR) revealed a higher thermal stability and better plasticizing effect than that those found in the virgin SBR. The rheological properties of the grafted rubber indicated the improvement of the pseudo‐plastic (shear‐thinning) nature compared to that in gum SBR. The unfilled C‐g‐SBR vulcanizates exhibited physicomechanical properties comparable to 5‐phr processing‐oil‐containing SBR [oil‐plasticized styrene–butadiene rubber (OPSBR)] vulcanizates. The carbon‐black‐filled C‐g‐SBR vulcanizates exhibited improved plasticization, a faster curing rate, easy processability, and better physicomechanical properties compared to the 5‐phr OPSBR vulcanizates. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45150.  相似文献   

13.
Migration of antidegradants to the surface in silica-filled natural rubber (NR) vulcanizates was studied with migration-generating equipment using a vacuum technique. 2,6-Di-t-butyl-4-methyl phenol (BHT), N-phenyl-N′-isopropyl-p-phenylenediamine (IPPD), N-phenyl-N′-(1,3-dimethylbutyl-p-phenylenediamine (HPPD), and wax (n-C23H48, n-C24H50, n-C25H52, and n-C26H54) were employed as antidegradants. The migration rate was found to be dependent on the content of silica in the vulcanizates. IPPD migrates faster than BHT and HPPD irrespective of the content of silica. BHT migrates faster than HPPD at 60 and 80°C, but slower than HPPD at 100°C. The migration rates of BHT, IPPD, and HPPD decrease with increase of the silica content from 30 to 70 phr. Wax with a low molecular weight migrates faster than that with a high molecular weight. The migration rate of n-C23H48, irrespective of migration temperature, decreases with increase of the silica content, similar to BHT, IPPD, and HPPD, but those of n-C25H52 and n-C26H54 have a local maximum at 50 phr silica content. The activation energies for migration to the surface in the vulcanizate containing 50 phr of silica are 19.3, 28.7, 40.1, 42.2, 51.6, 58.8, and 65.5 kJ/mol for BHT, IPPD, HPPD, n-C23H48, n-C24H50, n-C25H52, and n-C26H54, respectively. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1821–1828, 1998  相似文献   

14.
A novel antioxidant compound has been isolated and identified from the leaves of theRosmarinus officinalis L. The compound, named rosmaridiphenol, is a diphenolic diterpene. When tested in lard, the antioxidant activity of this compound was superior to BHA. Structural elucidation of rosmaridiphenol was accomplished by infrared spectroscopy (IR), mass spectroscopy (MS),1H-NMR (nuclear magnetic resonance) and13C-NMR spectroscopy.  相似文献   

15.
The graft copolymerization of 2‐hydroxyethyl acrylate (HEA) monomer onto natural rubber (NR) latex was successful using cumene hydroperoxide and tetraethylene pentamine as redox initiators. The grafting of poly(2‐hydroxyethyl acrylate) (PHEA) on the NR particles was confirmed by Fourier transform infrared spectroscopy, 1H NMR spectroscopy and TEM. The NR‐g‐PHEA with various grafting percentages (0%, 8.7%, 14.3% and 18.7%) was compounded on a two‐roll mill with a sulfur vulcanization system. The effects of grafting percentage on the cure characteristics, dielectric properties, thermal properties and physical properties of NR‐g‐PHEA vulcanizates were investigated. It was found that increased grafting caused NR‐g‐PHEA vulcanizates to have reduced water contact angle, scorch time and cure time, while the dielectric constant and dissipation factor increased. The NR‐g‐PHEA vulcanizate with 8.7% grafting exhibited the highest delta torque (MH ? ML), crosslink density, tensile strength, moduli at 100%, 200% and 300% strains, and hardness, with insignificant loss of elongation at break in comparison to the other cases. © 2018 Society of Chemical Industry  相似文献   

16.
The graft copolymerization of 2‐dimethylamino ethylmethacrylate (DMAEMA) onto ethylene propylene diene mononer rubber (EPDM) was carried out in toluene via solution polymerization technique at 70°C, using dibenzoyl peroxide as initiator. The synthesized EPDM rubber grafted with poly[DMAEMA] (EPDM‐g‐PDMAEMA) was characterized with 1H‐NMR spectroscopy, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The EPDM‐g‐PDMAEMA was incorporated into EPDM/butadiene acrylonitrile rubber (EPDM/NBR) blend with different blend ratios, where the homogeneity of such blends was examined with scanning electron microscopy and DSC. The scanning electron micrographs illustrate improvement of the morphology of EPDM/NBR rubber blends as a result of incorporation of EPDM‐g‐PDMAEMA onto that blend. The DSC trace exhibits one glass transition temperature (Tg) for EPDM/NBR blend containing EPDM‐g‐PDMAEMA, indicating improvement of homogeneity. The physico‐mechanical properties after and before accelerated thermal aging of the homogeneous, and inhomogeneous EPDM/NBR vulcanizates with different blend ratios were investigated. The physico‐mechanical properties of all blend vulcanizates were improved after and before accelerated thermal aging, in presence of EPDM‐g‐PDMAEMA. Of all blend ratios under investigation EPDM/NBR (75/25) blend possesses the best physico‐mechanical properties together with the best (least) swelling (%) in brake fluid. Swelling behavior of the rubber blend vulcanizates in motor oil and toluene was also investigated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
The establishment of prediction model for abrasion properties of vulcanizates, based on their simple physio‐mechanical properties, is a hot research field in tribology. The hardness (H), resilience (R), and dynamic fatigue fracture parameters (m) of rubber vulcanizates were combined together in this article, named as hardness–resilience product (HmR), and its relationships with the abrasion loss for various vulcanizates [natural rubber (NR), styrene–butadiene rubber (SBR), butadiene rubber (BR), and their blends] was investigated by using Akron and DIN abrader. The results showed that, for NR/SBR blends with different SBR content, compared with log(H4R), the abrasion loss had much better linear relationship with log(HmR) for both Akron and DIN abrasion. This good linear relationship, for both Akron and DIN abrasion, also appeared in the SBR/BR blends with different BR content. Furthermore, for both blending systems (NR/SBR and SBR/BR), when all the data above were put together, the abrasion loss also had good linear relationships with its log(HmR) no matter for Akron or DIN abrasion, which indicated that this linear relationship had some universality. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1212‐1219, 2013  相似文献   

18.
The grafting copolymerization of natural rubber and o‐aminophenol was carried out by using two‐roll mill machine. The prepared grafted antioxidant, NR‐graft‐o‐AP, analyzed by using Infrared and 1H‐NMR Spectroscopy techniques. The thermal stability, mechanical properties, and ultrasonic attenuation coefficient were evaluated for NBR vulcanizates containing the commercial antioxidant, PBN, and the prepared grafted antioxidant, NR‐graft‐o‐AP, and the control vulcanizate. Results of the thermal stability indicate that the prepared NR‐graft‐o‐AP can protect NBR vulcanizate against thermal treatment much better than the commercial antioxidant, PBN, and control mix, respectively. The prepared grafted antioxidant improves the mechanical properties of NBR vulcanizate. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Aromatic diamine monomers, including o-phenylenediamine (oPD), p-phenylenediamine (pPD), 4,4′-diaminodiphenylenemethane (DADPM) and benzidine (BZN), were polymerized by chemical oxidation using sodium persulfate, potassium persulfate, and ammonium persulfate as oxidant catalysts. Aluminium-triflate (Al(OTf)3) was also used for the first time as a co-catalyst under various polymerization conditions. The homopolymers obtained are characterized by FT-IR, 1H and 13C NMR, GPC, WAXD, DSC and TGA. The yield, solubility, structure and molecular weight of the polymers are significantly dependent on the oxidative catalyst and polymerization conditions. The polymers show different molecular structures, good thermal stability and decompose above 400 °C in nitrogen.  相似文献   

20.
Poly(N-[(1-n-butoxycarbonyl)ethyl]maleimide) (PBAM) was synthesized by solution polymerization with 2,2′-Azobis(isobutylronitrile) (AIBN) as radical initiator. The resulting polymer(PBAM) was characterized by infrared spectroscopy (IR), themogravimetry (TG), and differential thermal analysis (DTA). The initial decomposition temperature of PBAM is 321.6°C; the glass transition temperature of PBAM was 240.5°C. The effects of solvent, temperature, initiator concentration ([I]), and monomer concentration ([BAM]) on polymerization were also discussed. The overall activation energy (Ea) of homopolymerization was determined (Ea = 93.5 kJ/mol). It was revealed that the rate of polymerization (Rp) can be expressed as Rp ∝ [I]0.58[BAM]. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 424–427, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号