首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liqun Xu 《Polymer》2004,45(21):7325-7334
The addition of a small amount of nanoclay (1-3 wt%) can provide excellent volume shrinkage control of unsaturated polyester (UP)/styrene (St)/poly(vinyl acetate) (PVAc) systems cured at room temperature. PVAc serves as the low profile additive (LPA). In this study, both temperature-induced phase separation of the uncured resin mixture and transmission electron microscopy (TEM) of the cured sample revealed that nanoclay resided in the LPA-rich phase, leading to a higher reaction rate and earlier onset of micro-cracking in the LPA-rich phase or at the interface of the LPA-rich and UP-rich phases. Consequently, an earlier volume expansion during curing was observed in reactive dilatometry, resulting in better shrinkage control. On-line measurement of the composite thickness change during vacuum-infusion liquid composite molding [e.g. the Seemann Composite Resin Infusion Molding Process (SCRIMP)] further proved excellent volume shrinkage control of nanoclay filled systems, leading to a smoother composite surface.  相似文献   

2.
Xia CaoL.James Lee 《Polymer》2003,44(6):1893-1902
In low temperature molding processes, control of resin shrinkage and residual monomer is an important concern. The presence of low profile additives (LPAs) can reduce the shrinkage of unsaturated polyester (UP)/styrene (St) resins under proper processing conditions but may increase the residual styrene content. A systematic study was carried out to investigate the effect of the initiator system and reaction temperature on sample morphology, final resin conversion, and resin shrinkage of UP resins with LPA. It was found that the final conversion of the resin system could be improved by using dual initiators. The effect is more obvious at low temperatures. Volume shrinkage measurements of the resin system initiated with dual initiators revealed that good LPA performance was achieved at low (e.g. 35 °C) and high (e.g. 100 °C) temperatures but not at intermediate ones. This can be explained by how temperature affects phase separation, reaction kinetics in the LPA-rich and UP-rich phases, micro-void formation, and thermal expansion.  相似文献   

3.
The effects of three series of self‐synthesized poly(methyl methacrylate) (PMMA)‐based low‐profile additives (LPAs), including PMMA, poly(methyl methacrylate‐co‐butyl acrylate), and poly(methyl methacrylate‐co‐butyl acrylate‐co‐maleic anhydride) with different chemical structures and MWs on the volume shrinkage characteristics and internal pigmentability for low‐shrink unsaturated polyester (UP) resins during curing were investigated by an integrated approach of static phase characteristics of the ternary styrene (ST)/UP/LPA system, reaction kinetics, cured‐sample morphology, microvoid formation, and property measurements. The relative volume fraction of microvoids generated during the cure was controlled by the stiffness of the UP resin used, the compatibility of the uncured ST/UP/LPA systems, and the glass‐transition temperature of the LPAs used. On the basis of the Takayanagi mechanical model, the LPA mechanism on volume shrinkage control, which accounted for phase separation and microvoid formation, and factors leading to both a good volume shrinkage control and acceptable internal pigmentability for the molded parts are discussed. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3388–3397, 2004  相似文献   

4.
低收缩不饱和聚酯及其染色性研究   总被引:2,自引:0,他引:2  
以甲基丙烯酸甲酯(MMA)和苯乙烯(St)为共聚单体,改变MMA和St的单体配比,用悬浮聚合方法合成了一系列共聚物,并以此作为低收缩添加剂(LPA),溶解于St中,加入到不饱和聚酯(UP)中进行固化反应。在此基础上,改变固化反应温度,LPA用量和种类,研究了LPA/UP体系固化后的体积收缩率、染色性能和力学性能。结果表明:MMA-St共聚物作为LPA,可以有效地降低UP固化后的体积收缩,并且保证了固化产物力学性能不降低和着色的均一性。  相似文献   

5.
针对普通不饱和聚酯(UP)作为油田固砂剂存在的固化后收缩率大、抗压强度偏低等缺点,研究了使用不同型号环氧(EP)树脂复配改性UP树脂的工艺.通过选择合适的固化体系固化后,树脂的抗压强度达到12 MPa以上,相比使用纯UP树脂时提高了70%以上.固结砂的抗压强度随EP树脂比例的增加而线性增加,但渗透率下降幅度在30%以内...  相似文献   

6.
The effects of two low-profile additives (LPA), poly(vinyl acetate) (PVAc) and poly(methyl methacrylate) (PMMA), on the morphological changes during the cure of unsaturated polyester (UP) resins at 110°C were investigated by an approach of integrated reaction kinetics-morphology-phase separation measurements by using a differential scanning calorimeter (DSC), scanning electron microscopy (SEM), optical microscopy (OM), and a low-angle laser light-scattering appartus (LALLS). For the UP resins cured at 110°C, adding LPA could facilitate the phase separation between LPA and crosslinked UP phases early in the reaction, and discrete microgel particles were thus allowed to be identified throughout the reaction. Microvoids and microcracks responsible for the volume shrinkage control could also be observed evidently at the later stage of reaction under SEM. Depending on the types of LPA and the initial molar ratios of styrene to polyester C?C bonds, the morphological changes during the cure varied considerably. The progress of microstructure formation during reaction has been presented. Static ternary phase characteristics for the styrene–UP–LPA system at 25°C have also been employed to elucidate the resulting morphology during the cure in both the continuous and the dispersed phases. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
The effects of molecular weight and molecular structure of styrene(St)‐based and vinyl acetate(VAc)‐based low‐profile additive (LPA) on the curing kinetics and compatibility of unsaturated polyester (UP)/LPA system and linear shrinkage, water absorption rate, surface gloss and pigmentability of bulk molding compound (BMC) were investigated. Results show that the curing reaction rate decreases with an increase of the molecular weight of LPA due to the chain entanglement effect. The plasticizing effect of LPA on the (UP) network was reduced with an increase of the molecular weight of LPA. Water absorption of BMC increases as the molecular weight of LPA increases, implying that more microvoids were formed inside the BMC, resulting a lower linear shrinkage rate, and worse pigmentability. However, good shrinkage control LPA does not necessarily lead to a smoother surface and better surface gloss. Furthermore, modified LPAs possess better compatibility with UP, the final curing conversion of UP is elevated, and both better shrinkage control and surface properties are also observed.  相似文献   

8.
Xia CaoL.James Lee 《Polymer》2003,44(5):1507-1516
The effect of a comonomer, methyl methacrylate (MMA), on volume shrinkage and residual styrene content of an unsaturated polyester (UP) resin with low profile additives (LPAs) cured at low temperature was investigated by an integrated reaction kinetics-morphology-property analysis. MMA affects the volume shrinkage and residual styrene content differently depending on MMA to styrene (St) CC bond molar ratio. At low MMA/St ratio, residual styrene decreases and the volume shrinkage of the resin system remains unchanged. At high MMA/St ratio, residual styrene can be substantially reduced, but the resin system suffers poor volume shrinkage control. Reactivity of the comonomer MMA and its compatibility to other components in the resin system can explain the observed results. A series of Seemann composites resin infusion molding process (SCRIMP) were conducted to study the relationship among materials, processing, and properties of molded composites in low temperature curing processes.  相似文献   

9.
In blends of unsaturated polyester (UP), poly (vinyl acetate) (PVAc), and styrene, a reaction‐induced phase separation occurs upon curing that is due to the crosslinking between styrene and the UP molecules. The evolution of the morphology was observed by optical microscopy on a heated stage. Light transmission was used in parallel to precisely detect the onset of phase separation and the formation of microvoids. Using Fourier transform IR spectroscopy in the same conditions, the conversions at phase separation and at microvoiding were evaluated. Phase separation occurs at a very low degree of conversion and microvoiding develops at around 60% of conversion. The final morphology of the blend was investigated by scanning electron microscopy. The relative influences of the cure temperature, the concentration in PVAc, and the molecular weight of PVAc were investigated. It was confirmed that the early stages of the reaction at high temperature determine the final morphology of the blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3877–3888, 2006  相似文献   

10.
A major drawback of cured phenol formaldehyde resin is the presence of microvoids, resulting from the liberation of condensation byproducts. In an attempt to rectify this, phenolic resol resin was blended with unsaturated polyester (UP). UPs with various maleic anhydride (MA) to phthalic anhydride (PA) ratios were synthesized and later mixed with resol resin in various proportions. The best MA/PA ratio was found out by determining the specific gravity, acetone‐soluble matter, and volatile content of the cast blend, cured under a satisfactory time–temperature schedule. The influence of acid value of the UP and the most desirable UP content were also investigated on the basis of the quality of the modified phenolic samples. The structural changes in the modified resin were studied using FTIR spectroscopy. Scanning electron micrographs (SEM) of the fractured surfaces were obtained to ascertain the extent of microvoids in the modified resin. Both thermogravimetric analysis results and SEM micrographs confirm the effectiveness of UP in reducing the microvoids in the cast resol resin. The tensile and impact strengths of the samples also reflect the superior quality of the resol phenolic resins that have been modified by UP. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
The effects of reactive poly(methyl methacrylate) (PMMA) and poly(vinyl acetate)‐block‐PMMA as low‐profile additives (LPAs) on the volume shrinkage characteristics and internal pigmentability for low‐shrink unsaturated polyester (UP) resins during curing at 110°C were investigated. These reactive LPAs, which contained peroxide linkages in their backbones, were synthesized by suspension polymerization with polymeric peroxides as initiators. Depending on the LPA composition and molecular weight, the reactive LPAs led to a considerable volume reduction or even to a volume expansion after the curing of styrene (ST)/UP/LPA ternary systems; this was attributed mainly to the expansion effects of the LPAs on the ST‐crosslinked polyester microgel structures caused by the reduction in the cyclization reaction of the UP resin during curing as well as to the repulsive forces between the chain segments of UP and LPAs within the microgel structures. The experimental results were explained by an integrated approach of measurements for the static phase characteristics of the ST/UP/LPA system, reaction kinetics, cured sample morphology, and microvoid formation with differential scanning calorimetry, scanning electron microscopy, optical microscopy, and image analysis. With the aid of the Takayanagi mechanical model, the factors leading to both a good volume shrinkage control and acceptable internal pigmentability for the molded parts were also explored. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 264–275, 2005  相似文献   

12.
Modified St/DVE cured materials were formulated with a commercial DVEC (Mn=1015 g/mol) and a synthesized (583 g/mol) DVEL resins and styrene, adding a high molecular weight PMMA as modifier. A thermodynamic analysis of the initial miscibility for the St-PMMA and DVE-PMMA quasibinary systems was realized using the experimental cloud-point curves (CPC), in order to determine the binary interaction parameters. Calculated CPC for the quasiternary St/DVE/PMMA at 25 °C showed that St/DVEL/PMMA is miscible in the whole concentration range, while the St/DVEC/PMMA becomes partially miscible almost at the start of curing reaction (very low conversions). This miscibility behavior originates quite different morphologies in the systems cured at room temperature. Final materials with DVEL showed typical nodular microphase morphologies generated by polymerization induced phase separation (PIPS) mechanism. Materials with DVEC showed typical macrophase morphologies characterized by droplets-like domains, with secondary phase separation inside the droplets and in the mother phase. These morphological structures were directly related to the thermal and mechanical properties of the final systems. The low molecular weight resin generates a thermoset of higher glass transition temperature, bending modulus, and compression yield stress, but lower fracture resistance than the high molecular weight commercial resin. The addition of a thermoplastic modifier allowed to improve the fracture resistance without the unwanted reduction in modulus, which is inevitable when using elastomeric additives. The reason for the existence of an optimum modifier concentration is also discussed.  相似文献   

13.
Poly(p‐vinylphenol) (VP) based benzoxazine was prepared from VP, formaline, and aniline. The curing behavior of the benzoxazine with the epoxy resin and the properties of the cured resin were investigated. Consequently, the curing reaction did not proceed at low temperatures, but it proceeded rapidly at higher temperatures without a curing accelerator. The reaction induction time or cure time of the molten mixture from VP based benzoxazine and epoxy resin was found to decrease, compared with those from conventional bisphenol A based benzoxazine and epoxy resin. The curing reaction rate of VP based benzoxazine and epoxy resin increased more than that of conventional bisphenol A based benzoxazine and epoxy resin. The properties of the cured resin from neat resins and from reinforced resins with fused silica were evaluated. The cured resins from VP based benzoxazine and epoxy resin showed good heat resistance, mechanical properties, electrical insulation, and water resistance compared to the cured resin from VP and epoxy resin using imidazole as the catalyst. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 555–565, 2001  相似文献   

14.
The novel interpenetrating polymer networks (IPNs) based on cycloaliphatic epoxy resin (CER) containing cyclohexene oxide groups and tri-functional acrylate, trimethylol-1, 1, 1-propane trimethacrylate (TMPTMA) were synthesized. The formation of the IPNs was on-line monitored by means of polarizing optical microscope, time-resolved light scattering and Fourier transform infrared spectroscopy. The morphological and mechanical properties of the resultant IPNs were investigated and evaluated with scanning electron microscopy (SEM) and dynamical thermal mechanical analysis (DTMA), respectively. The on-line monitoring results showed that during the course of the IPNs formation, the TMPTMA component was cured more quickly than the CER component, leading to the formation of the sequential IPNs. During the early curing stage, there were the phase separation phenomena in the CER/TMPTMA system. The SEM results revealed that although there were some slight phase separation phenomena in the CER/TMPTMA system in the early curing stage, the resultant IPNs displayed the homogeneous structures and did not show the apparent phase separation morphology. The DTMA results revealed that the resulting IPNs exhibited rather higher modulus and denser cross-linking network structure than the neat CER system.  相似文献   

15.
光固化粉末涂料涂膜性能研究   总被引:4,自引:1,他引:4  
以不饱和聚酯和丙烯酸环氧树脂为光固化粉末涂料的基体树脂,研究了两种基体树脂的结构、配比对光固化涂膜固化度及其性能的影响。结果表明固化度是影响耐溶剂性能、附着力、涂膜硬度和冲击强度的关键,适宜的n(UP)/n(EA)为1∶1;固化度应大于95%,可以达到99%。  相似文献   

16.
Thermoplastic additives tend to promote the phase separation during the reaction of unsaturated polyester resins. Consequently, they reduce the amount of shrinkage during curing. Several thermoplastic additives which resulted in significant different microstructure of cured resins were investigated. The effects of microstr acture formation on the sol-gel transition, reaction kinetics, and gelation time were studied. The mechanism of microstructure formation and causes of macro-gelation were explained by the influence of thermoplastic additives on the particle formation rate and inter-particle reaction rate during curing.  相似文献   

17.
Toughening has been the essential issue for developing high-performance thermosetting resins. Herein, starting from polyethersulfone (PES) and bisphenol A epoxy resin (EP), a facile strategy is developed to prepare tough resins through controlling phase structure with microwave-assisted thermal curing. PES/EP resins cured with the assistance of microwave curing (m-PES/EP) have two major differences compared with those using traditional heat curing (t-PES/EP), one is high degree of phase separation, and the other is phase separation mechanism. Initial phase separation of all t-PES/EP resins follows spinodal decomposition mechanism, while those of m-PES/EP systems with 8 wt% and 18 wt% of PES follow nucleation and growth mechanism. These differences are derived from the fact that microwave curing has much faster phase separation rate and curing reaction rate than thermal curing owing to the higher thermal effect. Differences in phase structure bring different macro performances, and m-PES/EP systems have higher impact strengths, fracture toughnesses, and flexural strengths than t-PES/EP resins. This investigation provides a facial and effective way of developing higher performance thermoplastic/thermosetting resin system through controlling phase structure. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48394.  相似文献   

18.
Terpenediphenol‐based benzoxazine was prepared from terpenediphenol, formaline, and aniline. Curing behavior of the benzoxazine with epoxy resin and the properties of the cured resin were investigated. Consequently, the curing reaction did not proceed at low temperatures, but it proceeded rapidly at higher temperatures without a curing accelerator. The properties of the cured resin both from neat resins and from reinforced resins with fused silica were evaluated, respectively. The cured resins showed good heat resistance, mechanical properties, electrical insulation, and especially water resistance, compared with the cured resin from bisphenol A type novolac and epoxy resin. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2266–2273, 1999  相似文献   

19.
The polysilicic acid nanoparticle (PN) was modified by the reaction of silanol group on its surface with silyl group (–Si(OR)3) containing modifiers such as phenyltrimethoxylsilane (PTS), 2-(p-styryl)ethyltrimethoxylsilane (SETS), and 3-(trimethoxylsilyl)propyl methacrylate (TPMA), respectively, to afford modified PNs (M-PNs) including P-PN, S-PN, and T-PN. P-PN, S-PN and T-PN were mixed, respectively, with unsaturated polyester resin (UP) in styrene, UP/St, and then let homogeneous solutions cure at 150°C to produce transparent hybrid materials, UP/St/P-PN, UP/St/S-PN, and UP/St/T-PN. It was found that the M-PNs could not only act as low-profile additives (LPAs) to reduce the shrinkage of the hybrids during curing but also enhance their dynamic mechanical properties. The shrinking mechanism of the hybrids during curing and the interfacial force between M-PNs and UP/St matrix, which plays an important role in shrinking control and properties of hybrid, were studied in detail.  相似文献   

20.
A major concern in low temperature composite manufacturing processes is how to design and control the mold filling and curing time. Inhibitors or retarders are often used to prevent premature gelation and provide a sufficiently long time to fill the mold completely. However, the addition of these chemical species tends to result in a low mold curing rate and a low final resin conversion. In this study, a chelating agent 2,4-pentanedione (2,4-P) was used to manipulate resin gelation and curing. This agent is known to affect the catalytic activity of the promoters (i.e. metal compounds such as cobalt carboxylates) in the decomposition of initiators. It can function as either a retarder or a co-promoter in the co-polymerization of styrene/polyester and styrene/vinyl ester resins depending on the acidity of the resin system. Based on this observation, an improved room temperature vacuum-assisted resin transfer molding process was designed. This design allows 2,4-P to serve first as a retarder during mold filling to achieve a long gel time, it then as a co-promoter during curing to increase the curing rate. The 2,4-P also increases the resin conversion as the acidity of the resin increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号