共查询到20条相似文献,搜索用时 15 毫秒
1.
采用化学沉淀法将磁性基质与二维层状水滑石组装制备了磁性的水滑石,再利用浸渍法和滴加吸附的负载方法制备了磁性水滑石负载纳米钯催化剂。通过XRD、ICP—AES、TG、氢气脉冲吸附等分析手段对磁性催化剂晶型结构、形貌及金属分散度进行了表征,考察了用磁性水滑石负载纳米钯催化剂对不同碱、溶剂、溶剂与水比例、时间、温度、催化剂用量等条件对Suzuki反应的影响。实验结果表明,水滑石赋予磁性后结构并没有改变,仍然具有较高的催化活性。反应的最佳条件为:碳酸钾作碱、溶剂为乙醇、与水比例为1:5、反应温度为60℃、反应1h、催化剂用量分别为3.6×10^-3mmol和4.8×10^-3mmol,催化剂重复三次产物收率仍可保持在90%以上。 相似文献
2.
3.
4.
采用沉淀-水热法制备了表面活性剂(十二烷基硫酸根)插层的水滑石负载纳米钯催化剂,通过XRD、ICP-AES、XPS、TG、氢气脉冲吸附等分析手段对催化剂晶型结构、形貌及金属分散度进行了表征,考察了用十二烷基硫酸根插层水滑石后负载钯制备的催化剂在不同碱、溶剂、溶剂与水比例、时间、温度、催化剂用量等条件下对Suzuki偶联反应的影响。实验结果表明,插层后的水滑石结构并没有改变,催化剂催化活性显著提高。反应的最佳条件为:碱为氢氧化钾、溶剂为甲醇、与水比例为1:1、温度为50℃、时间为60min、催化剂用量为1.75×10-3mmol,催化剂在重复使用第三次时,产物收率仍可保持在95%以上。 相似文献
5.
采用化学沉淀法制备了表面活性剂(十二烷基硫酸根)插层的Ca类水滑石负载纳米钯催化剂。通过XRD、ICP-AES、TG、IR、XPS等分析手段对上述催化剂的晶型结构、形貌及负载金属的特征进行了表征,考察了不同碱、溶剂、溶剂与水比例、催化剂用量等条件对插层Ca类水滑石负载纳米钯催化剂催化Suzuki反应的影响。实验结果表明:反应的最佳条件为:氢氧化钾作碱、溶剂为乙醇、水与乙醇比例为1:5、催化剂用量分别为3.4×10-3mmol,反应1h产物收率最高可达96.44%。 相似文献
6.
7.
采用离子交换-还原法制备了系列锌铝水滑石负载钯催化剂Pd/ZnAl-LDH,通过XRD、TEM和ICP对该系列催化剂进行了表征,并对其在低毒溶剂乙醇或水中苯甲醇氧化反应的催化性能进行了详细考察。研究结果表明,反应溶剂、Pd负载量、氧气压力、反应时间等对催化剂的催化性能有很大的影响,当Pd负载质量分数为2%,反应压力为0.2MPa时,Pd/ZnAl-LDH在乙醇溶剂中表现出最佳的催化性能,苯甲醇转化率和苯甲醛选择性可分别达到93.3%和93.6%。 相似文献
8.
以镁铝水滑石(MgAl-LDH)为载体,在不加入任何化学还原剂和稳定剂的条件下,利用超声波将MgAl-LDH的表面羟基激发出具有较强还原性的氢自由基,原位还原Pd2+为Pd0,制备出MgAl-LDH负载纳米钯催化剂(Pd/LDH).采用XRD、FT-IR、TEM和N2物理吸附等对所制备的Pd/LDH进行了分析与表征.在... 相似文献
9.
10.
高分子负载钯催化剂与均相催化剂相比易于分离、可重复使用,同时大多数高分子负载钯催化剂保留了较高的催化活性。高分子负载钯催化剂已成为Suzuki反应催化剂的研究热点之一。本文综述了近年来高分子负载钯络合物及钯纳米催化剂在Suzuki反应中的研究进展。 相似文献
11.
12.
13.
以无花果(FL)树叶提取液作为还原剂、稳定剂,以树叶残渣(RFL)为载体,制备了负载型纳米钯铜合金催化剂(Pd Cu/RFL)。采用XRD、FT-IR、TEM、XPS、N2-吸附脱附等手段对制备的Pd Cu/RFL催化剂进行了表征,并研究了其催化Suzuki偶联反应的性能。Pd4Cu1NPs的粒径分布在2.31~6.62nm之间,平均粒径为3.97nm,均匀地分散在载体RFL表面。Pd与Cu间的电子转移和Pd4Cu1NPs与载体表面上含氧含氮官能团的络合不仅提高了Pd Cu/RFL催化Suzuki偶联反应活性,也改善了催化剂的稳定性。当Pd的加入量为反应底物的0.06mol%时,催化对溴硝基苯和苯硼酸的反应收率可以达到97.00%,催化剂重复使用9次后,收率仍可以保持在93%以上。 相似文献
14.
Suzuki芳基偶联反应是构建联苯芳烃和多联苯芳烃结构单元的重要反应之一。传统的Suzuki偶联反应的催化剂多数是均相催化剂,催化活性很高,但存在催化剂回收困难、污染产品等缺点。固定化技术可有效地解决上述问题,已成为Suzuki偶联反应的催化剂研发的热点。综述了近些年来以无机碳、金属氧化物、多孔分子筛等无机材料为载体负载钯催化Suzuki偶联反应的最新进展。 相似文献
15.
负载钯及非钯型Suzuki偶联反应催化剂体系的研究进展 总被引:2,自引:0,他引:2
Suzuki偶联反应是现代有机合成化学中构筑碳碳键的最有效方法之一。传统的Suzuki反应催化剂主要是Pd(PPh3)4、Pd(OAc)2等均相催化剂。这类催化剂的活性较高,但其价格高、化学稳定性较差、难以与反应液分离和回收再利用等缺点也是不容忽视的。近年来,人们开发了一系列具有不同的钯材料载体(碳材料、高分子材料以及无机材料等)的非均相催化剂体系,以及基于Ni、Cu、Mn等过渡金属的新型催化体系。这些新型的催化剂体系的发展有效地解决了上述均相催化剂的不足。综述了近来Suzuki反应在负载催化剂和非钯催化剂方面的研究进展。 相似文献
16.
钯催化剂催化卤代芳烃和芳基硼酸生成碳一碳键的Suzuki偶联反应是合成联苯化合物的最重要的途径之一。相比于传统均相钯催化剂的利用率低,污染产品等缺点,磁性钯催化剂易回收,可重复利用,具有工业化应用前景,受到了广泛的关注。综述了近年来无配体磁性钯催化剂、无包裹磁性钯配体催化剂以及以碳、氧化硅、聚合物包裹的具有核壳结构的磁性钯配体催化剂的制备及其催化Szuki偶联反应的研究进展。 相似文献
17.
18.
19.
20.
金属钯催化的Suzuki偶联反应是碳一碳偶联反应中的最重要的反应之一。传统的均相催化体系具有很多的不足,如产物与催化剂不易分离、原料价格昂贵、催化剂不能重复使用等,而使用无配体负载钯的催化剂可有效地解决上述问题。综述了近些年来无配体材料负载钯催化Suzuki偶联反应的研究进展,载体包括碳材料、多孔分子筛、水滑石、高分子材料、金属氧化物、硅藻土、纤维素、磷灰石和氟硅胶等。 相似文献