首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of air filtration and ventilation on indoor particles were investigated using a single-zone mathematical model. Particle concentration indoors was predicted for several I/O conditions representing scenarios likely to occur in naturally and mechanically ventilated buildings. The effects were studied for static and dynamic conditions in a hypothetical office building. The input parameters were based on real-world data. For conditions with high particle concentrations outdoors, it is recommended to reduce the amount of outdoor air delivered indoors and the necessary reduction level can be quantified by the model simulation. Consideration should also be given to the thermal comfort and minimum outdoor air required for occupants. For conditions dominated by an indoor source, it is recommended to increase the amount of outdoor air delivered indoors and to reduce the amount of return air. Air filtration and ventilation reduce particle concentrations indoors, with the overall effect depending on efficiency, location and the number of filters applied. The assessment of indoor air quality for specific conditions could be easily calculated by the model using user-defined input parameters.  相似文献   

2.
The effect of filtration and ventilation on reduction of submicrometer particle concentration indoors was investigated in an office building. The air-handling system consisting of dry media filters and an air-conditioning unit, reduced particle concentration levels by 34%. The characteristics of indoor airborne particles were dominated by, and followed the pattern of, outdoor air, with vehicle combustion aerosols as the main pollutant. The ratio indoor/outdoor particle concentration varied between 14 and 26% for different sub-zones. The presence of significant source of particles indoors was not observed. A simple mathematical model predicting evolution of particles indoors is presented. The model, based on a particle number balance equation, was validated with experimental data and showed very good agreement between predicted and measured parameters.  相似文献   

3.
We studied the effect of ventilation and air filtration systems on indoor air quality in a children's day-care center in Finland. Ambient air nitrogen oxides (NO, NO2) and particles (TSP, PM10) were simultaneously measured outdoors and indoors with automatic nitrogen oxide analyzers and dust monitoring. Without filtration nitrogen oxides and particulate matter generated by nearby motor traffic penetrated readily indoors. With chemical filtration 50-70% of nitrogen oxides could be removed. Mechanical ventilation and filtration also reduced indoor particle levels. During holidays and weekends when there was no opening of doors and windows and no particle-generating activity indoors, the indoor particle level was reduced to less than 10% of the outdoor level. At times when outdoor particle concentrations were high during weekdays, the indoor level was about 25% of the outdoor level. Thus, the possible adverse health effects of nitrogen oxides and particles indoors could be countered by efficient filtration. We also showed that inclusion of heat recovery equipment can make new ventilation installations economical.  相似文献   

4.
根据成都市夏季室外颗粒物浓度的实测结果,利用数值流体力学方法对混合通风空调房间的粒子进行了模拟,分析了室内粒子的空间演化及其与室外粒子的浓度关系。结果表明,室内粒子浓度对室外粒子浓度具有直接的依赖性,其中进风携带的小粒子浓度在室内下降较为明显。因此,在研究室内空气品质的同时,应考虑室外背景粒子浓度变化的影响。  相似文献   

5.
Concern for the exposure of children attending schools located near busy roadways to toxic, traffic‐related air pollutants has raised questions regarding the environmental benefits of advanced heating, ventilation, and air‐conditioning (HVAC) filtration systems for near‐road pollution. Levels of black carbon and gaseous pollutants were measured at three indoor classroom sites and at seven outdoor monitoring sites at Las Vegas schools. Initial HVAC filtration systems effected a 31–66% reduction in black carbon particle concentrations inside three schools compared with ambient air concentrations. After improved filtration systems were installed, black carbon particle concentrations were reduced by 74–97% inside three classrooms relative to ambient air concentrations. Average black carbon particle concentrations inside the schools with improved filtration systems were lower than typical ambient Las Vegas concentrations by 49–96%. Gaseous pollutants were higher indoors than outdoors. The higher indoor concentrations most likely originated at least partially from indoor sources, which were not targeted as part of this intervention.  相似文献   

6.
This study examines the influence of ventilation on chemical reactions among indoor pollutants. We have used a one compartment mass balance model to simulate unimolecular and bimolecular reactions occurring indoors. The initial modeling assumes steady-state conditions. However, at low air exchange rates, there may be insufficient time to achieve steady-state. Hence we have also modeled non steady-state scenarios. In the cases examined, the results demonstrate that the concentrations of products generated from reactions among indoor pollutants increase as the ventilation rate decreases. This is true for unimolecular and bimolecular reactions, regardless of whether the pollutants have indoor or outdoor sources. It is also true even when one of the pollutants has an outdoor concentration that displays large diurnal variations. We have supplemented the modeling studies with a series of experiments conducted in typical commercial offices. The reaction examined was that between ozone and limonene. The ozone was present as a consequence of outdoor-to-indoor transport while the limonene originated indoors. Results were obtained for low and high ventilation rates. Consistent with the modeling studies, the concentrations of monitored products were much larger at the lower ventilation rates (even though the ozone concentrations were lower). The potential for reactions among indoor pollutants to generate reactive and irritating products is an additional reason to maintain adequate ventilation in indoor environments.  相似文献   

7.
Concentrations of 38 organic air pollutants including aromatic hydrocarbons (AHCs), carbonyl compounds (CCs), volatile organic halogenated compounds (VOHCs), and organophosphorus compounds (OPCs) were measured in indoor and outdoor air in an industrial city, Shimizu, Shizuoka Prefecture, Japan. Levels of pollutants tended to be higher indoors than outdoors in both summer and winter except for benzene, carbon tetrachloride, trichloroethylene, tetrachloroethylene, and dichlorvos (DDVP). This trend was especially pronounced for CCs such as formaldehyde and acetaldehyde. For the organic air pollutants, the concentrations of AHCs and VOHCs substantially increased in winter, but not those of CCs and OPCs; the trends were similar for both indoors and outdoors. We investigated possible indoor sources of pollutants statistically. Multiple regression analysis of corresponding indoor and outdoor concentrations and the responses to our questionnaire showed that indoor concentrations of certain AHCs were significantly affected by their outdoor concentrations and cigarette smoking. For formaldehyde, indoor concentrations were significantly affected by house age and the presence of carpet or pets. For p-dichlorobenzene (pDCB), the concentrations in bedroom trended to be higher than those in other indoors and outdoors, suggested that mothballs for clothes present in bedrooms are the principal indoor source of pDCB. We compared indoor and outdoor pollutant concentrations to acceptable risk limits for 11 organic air pollutants. In indoors without smoking samples, the geometric mean concentrations of benzene, formaldehyde, acetaldehyde, carbon tetrachloride, pDCB, and DDVP exceeded the equivalent concentration representing the upper bound of one-in-one-hundred-thousand (1x10(-5)) excess risk over a lifetime of exposure.  相似文献   

8.
Ozone concentrations were measured in indoor and outdoor residential air during the summer of 1992. Six homes located in a New Jersey suburban area were chosen for analysis, and each home was monitored for 6 days under different ventilation and indoor combustion conditions. The 5-hour average ozone concentration outdoors over the monitoring period was 95 ± 36 ppbv. One third of the days exceeded the National Ambient Air Quality Standard (NAAQS), one-hour maximum concentration of 120 ppb. The mean indoor to outdoor (I/O) ratios of ozone concentration ranged from 0.22 ± 0.09 to 0.62 ± 0.11, depending upon ventilation rate and indoor gas combustion. The presence of indoor gas combustion can significantly decrease the I/O ratio. Because of the great amount of time that people spend indoors, the indoor residential exposures were estimated to account for 57% of the total residential exposures. One type of the possible gas-phase reactions for indoor ozone, the reaction of ozone with a volatile organic compound containing unsaturated carbon-carbon bonds, is discussed with some supporting evidence provided in the study.  相似文献   

9.
The objective of this study was to quantify the influence of ventilation systems on indoor particle concentrations in residential buildings. Fifteen occupied, single‐family apartments were selected from three sites. The three sites have three different ventilation systems: unbalanced mechanical ventilation, balanced mechanical ventilation, and natural ventilation. Field measurements were conducted between April and June 2012, when outdoor air temperatures were comfortable. Number concentrations of particles, PM2.5 and CO2, were continuously measured both outdoors and indoors. In the apartments with natural ventilation, I/O ratios of particle number concentrations ranged from 0.56 to 0.72 for submicron particles, and from 0.25 to 0.60 for particles larger than 1.0 μm. The daily average indoor particle concentration decreased to 50% below the outdoor level for submicron particles and 25% below the outdoor level for fine particles, when the apartments were mechanically ventilated. The two mechanical ventilation systems reduced the I/O ratios by 26% for submicron particles and 65% for fine particles compared with the natural ventilation. These results showed that mechanical ventilation can reduce exposure to outdoor particles in residential buildings.  相似文献   

10.
Indoor air quality (IAQ) has been a matter of public concern these days whereas air pollution is normally monitored outdoors as part of obligations under the National air quality strategies. Much little is known about levels of air pollution indoors. Simultaneous measurements of indoor and outdoor carbon monoxide (CO) and oxides of nitrogen (NO and NO2) concentrations were conducted at three different environments, i.e. rural, urban and roadside in Agra, India, using YES - 205 multigas monitor during the winter season, i.e. October 2002-February 2003. A statistical correlation analysis of indoor concentration levels with outdoor concentrations was carried out. CO was maximum at roadside locations with indoor concentrations 2072.5 +/- 372 p.p.b. and outdoor concentrations 1220 +/- 281 p.p.b. (R2 = 0.005). Oxides of nitrogen were found maximum at urban site; NO concentration was 385 +/- 211 and 637 +/- 269 p.p.b. for indoors and outdoors respectively (R2 = 0.90792), where as NO2 concentration was 255 +/- 146 p.p.b. for indoors and 460 +/- 225 p.p.b. for outdoors (R2 = 0939464). Although indoor concentration at all the houses of the three sites have a positive correlation with outdoor concentration, CO variation indoors was very less due to outdoor sources. An activity schedule of inside and outside these homes were also prepared to see its influence and concentrations of pollutants. As standards for indoor air were not available for the Indian conditions these were compared with the known standards of other countries, where as outdoor concentrations were compared with the standards given by the Central Pollution Control board, which shows that indoor concentrations of both NO(x) and CO lie below permissible limits but outdoor concentrations of NO(x) cross the standard limits. PRACTICAL IMPLICATIONS: 'India currently bears the largest number of indoor air pollution (IAP) related health problems in world. An estimated 500,000 women & children die in India each year due to IAP-related cause--this is 25% of estimated IAP-related deaths worldwide. This study will be useful for policy makers, health related officials, academicians and Scientists who have interest in countries of developing world'.  相似文献   

11.
Particle count-based size distribution and PM(2.5) mass were monitored inside and outside an elementary school in Salt Lake City (UT, USA) during the winter atmospheric inversion season. The site is influenced by urban traffic and the airshed is subject to periods of high PM(2.5) concentration that is mainly submicron ammonium and nitrate. The school building has mechanical ventilation with filtration and variable-volume makeup air. Comparison of the indoor and outdoor particle size distribution on the five cleanest and five most polluted school days during the study showed that the ambient submicron particulate matter (PM) penetrated the building, but indoor concentrations were about one-eighth of outdoor levels. The indoor:outdoor PM(2.5) mass ratio averaged 0.12 and particle number ratio for sizes smaller than 1 microm averaged 0.13. The indoor submicron particle count and indoor PM(2.5) mass increased slightly during pollution episodes but remained well below outdoor levels. When the building was occupied the indoor coarse particle count was much higher than ambient levels. These results contribute to understanding the relationship between ambient monitoring station data and the actual human exposure inside institutional buildings. The study confirms that staying inside a mechanically ventilated building reduces exposure to outdoor submicron particles. PRACTICAL IMPLICATIONS: This study supports the premise that remaining inside buildings during particulate matter (PM) pollution episodes reduces exposure to submicron PM. New data on a mechanically ventilated institutional building supplements similar studies made in residences.  相似文献   

12.
Abstract A total of 140 homes in the Po River Delta area of North Italy (near Venice) were monitored during summer and winter to measure the concentration of nitrogen dioxide (NO2), and respirable suspended particulate matter (RSP, ≤ 2.5 μm). In this paper, the findings on home characteristics, daily activity pattern of occupants, and residential indoor air quality are described. Our study confirms that people spend the greater part of their daily lives indoors (84%), especially at home (64%). The concentration of monitored pollutants was greater in winter than in summer. The highest levels of NO2 were found in the kitchens. Significantly higher indoor NO2 levels were found in the houses with gas-furnace heating and/or with gas water heater located inside the home. RSP was significantly higher in homes where tobacco smoking took place, and was significantly related to the number of cigarettes smoked. A significant relationship between NO2 indoor concentrations and RSP values in both seasons was found.  相似文献   

13.
Relationship between outdoor and indoor air quality in eight French schools   总被引:1,自引:0,他引:1  
In the frame of the French national research program PRIMEQUAL (inter-ministry program for better air quality in urban environments), measurements of outdoor and indoor pollution have been carried out in eight schools in La Rochelle (France) and its suburbs. The buildings were naturally ventilated by opening the windows, or mechanically ventilated, and showed various air permeabilities. Ozone, nitrogen oxides (NO and NO(2)), and airborne particle (particle counts within 15 size intervals ranging from 0.3 to 15 mum) concentrations were continuously monitored indoors and outdoors for two 2-week periods. The indoor humidity, temperature, CO(2) concentration (an indicator of occupancy), window openings and building permeability were also measured. The temporal profiles of indoor and outdoor concentrations show ozone and nitrogen oxides behave differently: NO and NO(2) indoor/outdoor concentration ratios (I/O) were found to vary in a range from 0.5 to 1, and from 0.88 to 1, respectively, but no correlation with building permeability was observed. On the contrary, I/O ratios of ozone vary in a range from 0 to 0.45 and seem to be strongly influenced by the building air-tightness: the more airtight the building envelope, the lower the ratio. Occupancy, through re-suspension of previously deposited particles and possible particle generation, strongly influences the indoor concentration level of airborne particles. However, this influence decreases with particle size, reflecting the way deposition velocities vary as a function of size. The influence of particle size on deposition and penetration across the building envelope is also discussed by analyzing the I/O ratios measured when the buildings were unoccupied, by comparing the indoor concentrations measured when the buildings were occupied and when they were not (O/U ratios), and by referring to previously published studies focussing on this topic. Except one case, I/O were found to vary in the range from 0.03 to 1.79. All O/U are greater than one and increase up to 100 with particle size. PRACTICAL IMPLICATIONS: Assessing children's total exposure requires the knowledge of outdoor and indoor air contaminant concentrations. The study presented here provides data on compared outdoor and indoor concentration levels in school buildings, as well as information on the parameters influencing the relationship between outdoor and indoor air quality. It may be used as a basis for estimating indoor concentrations from outdoor concentrations data, or as a first step in designing buildings sheltering children against atmospheric pollution.  相似文献   

14.
Lars E. Ekberg 《Indoor air》1994,4(3):189-196
The indoor concentrations of contaminants originating from outdoor sources have been measured and calculated under transient conditions. The results show that contaminants that are supplied to an office building via the ventilation system can reach considerably high concentration levels. The indoor/outdoor concentration ratio and time lag are dependent on the air change rate. In buildings with low air change rates the indoor concentration variations are smoothed out compared to buildings with high air change rates. The results from the theoretical model are compared to the results from both laboratory and field measurements and the model is verified for well mixed conditions in a 20 m3 test chamber. The model can be used to simulate different control strategies for reduction of indoor contaminant concentrations related to outdoor sources. One such control strategy is based on reduction of the outdoor air change rate during periods with peak outdoor contaminant concentrations.  相似文献   

15.
Indoor fine particles (FPs) are a combination of ambient particles that have infiltrated indoors, and particles that have been generated indoors from activities such as cooking. The objective of this paper was to estimate the infiltration factor (Finf) and the ambient/non‐ambient components of indoor FPs. To do this, continuous measurements were collected indoors and outdoors for seven consecutive days in 50 non‐smoking homes in Halifax, Nova Scotia in both summer and winter using DustTrak (TSI Inc) photometers. Additionally, indoor and outdoor gravimetric measurements were made for each 24‐h period in each home, using Harvard impactors (HI). A computerized algorithm was developed to remove (censor) peaks due to indoor sources. The censored indoor/outdoor ratio was then used to estimate daily Finfs and to determine the ambient and non‐ambient components of total indoor concentrations. Finf estimates in Halifax (daily summer median = 0.80; daily winter median = 0.55) were higher than have been reported in other parts of Canada. In both winter and summer, the majority of FP was of ambient origin (daily winter median = 59%; daily summer median = 84%). Predictors of the non‐ambient component included various cooking variables, combustion sources, relative humidity, and factors influencing ventilation. This work highlights the fact that regional factors can influence the contribution of ambient particles to indoor residential concentrations.  相似文献   

16.
A dynamic botanical air filtration system (DBAF) was developed for evaluating the short and long-term performance of botanical air cleaning technology under realistic indoor conditions. It was a fan-assisted with controlled airflow, activated-carbon/hydroculture based potted plant unit. The DBAF was first tested using a full-scale stainless chamber to evaluate its short-term performance. It was then integrated in the HVAC system of a new office space (96.8 m2) to study the effects of moisture content in the root bed on the removal efficiency, and the long-term performance. The results indicated that 5% outdoor air plus botanical filtration lead to the similar indoor formaldehyde/toluene concentration level as 25% outdoor air without filtration, which means that the filtration system was equivalent to 20% outdoor air (476 m3/h). The DBAF was effective for removing both formaldehyde and toluene under 5–32% volumetric water content of the root bed. It also performed consistently well over the relatively long testing period of 300 days while running continuously. The reduction in outdoor ventilation rate while using the botanical filtration system to maintain acceptable air quality would lead to 10–15% energy saving for the cold climate (Syracuse, NY), based on simulation analysis using EnergyPlus. For winter condition, the filter was also found to increase the supply air RH by 20%, which would decrease the dryness of air. For summer condition, the increase of RH in summer would be within 15% of the RH condition when no botanical air filtration is present.  相似文献   

17.
Conservation measures that seal a building, such as storm window installation, can significantly reduce its energy requirements. These measures also protect its occupants from air pollutants having outdoor sources but amplify any harmful effects of those generated indoors. Which effect is greater?Since it is inadequate to consider pollution levels constant, we assume that they follow daily cycles and can thus be well represented by Fourier series. We conclude that the indoor concentration of any pollutant generated solely outdoors also follows a daily cycle but its maximum lags behind and is lower than the outdoor maximum to an extent depending in an inverse manner on v, the air exchange (ventilation + infiltration) rate. A simple measure of the daily variation of pollutant concentrations and indoor production rates can be derived from their Fourier series and used to test whether these quantities can be assumed constant.Although average daily indoor and outdoor pollutant concentrations of any pollutant are the same if there are no indoor sinks, lowering v will still protect a building's occupant if: (1) the outdoor peak or variation above its average is much greater than its average, and (2) the peak is short-lived.Lowering v probably raises indoor average and peak pollutant concentrations from all indoor sources by at least as much as it lowers only peaks from just one outdoor source, rush hour traffic, thus increasing indoor pollutant levels.  相似文献   

18.
Experiments were conducted to study the effect of mechanically induced fresh-air ventilation on the indoor air quality (IAQ) of the Tuskegee Healthy House (THH), selecting the outdoor weather conditions almost identical during the “fan OFF” and “fan ON” periods. Measurements of outdoor and indoor temperature and relative humidity (RH), in addition to the indoor dust particle concentration levels and interior wall moisture content, were systematically carried out during the summer month of August 2008. Results show that the effect of mechanically induced ventilation (“fan ON” period) is to raise the indoor RH, interior wall moisture content, and indoor dust particle concentration values significantly above those measured during the “fan OFF” period. The indoor temperature increases only slightly during the “fan ON” period.  相似文献   

19.
20.
Ward M  Siegel JA  Corsi RL 《Indoor air》2005,15(2):127-134
Stand-alone air cleaners may be efficient for rapid removal of indoor fine particles and have potential use for shelter-in-place (SIP) strategies following acts of bioterrorism. A screening model was employed to ascertain the potential significance of size-resolved particle (0.1-2 microm) removal using portable high efficiency particle arresting (HEPA) air cleaners in residential buildings following an outdoor release of particles. The number of stand-alone air cleaners, air exchange rate, volumetric flow rate through the heating, ventilating and air-conditioning (HVAC) system, and size-resolved particle removal efficiency in the HVAC filter were varied. The effectiveness of air cleaners for SIP was evaluated in terms of the outdoor and the indoor particle concentration with air cleaner(s) relative to the indoor concentration without air cleaners. Through transient and steady-state analysis of the model it was determined that one to three portable HEPA air cleaners can be effective for SIP following outdoor bioaerosol releases, with maximum reductions in particle concentrations as high as 90% relative to conditions in which an air cleaner is not employed. The relative effectiveness of HEPA air cleaners vs. other removal mechanisms was predicted to decrease with increasing particle size, because of increasing competition by particle deposition with indoor surfaces and removal to HVAC filters. However, the effect of particle size was relatively small for most scenarios considered here. PRACTICAL IMPLICATIONS: The results of a screening analysis suggest that stand-alone (portable) air cleaners that contain high efficiency particle arresting (HEPA) filters can be effective for reducing indoor fine particle concentrations in residential dwellings during outdoor releases of biological warfare agents. The relative effectiveness of stand-alone air cleaners for reducing occupants' exposure to particles of outdoor origin depends on several factors, including the type of heating, ventilating and air-conditioning (HVAC) filter, HVAC operation, building air exchange rate, particle size, and duration of elevated outdoor particle concentration. Maximum particle reductions, relative to no stand-alone air cleaners, of 90% are predicted when three stand-alone air cleaners are employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号