首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high-speed 2K/spl times/8 bit full CMOS SRAM fabricated with a platinum silicide gate electrode and single-level aluminum technology is described. A typical address access time of 16 ns, which is comparable to the 16-kb bipolar SRAMs, was achieved. Typical active and standby power dissipations are 150 mW and 25 nW, respectively. The platinum silicide word line reduces the total address access time by 25%. A compact cell layout design, as well as a 1.5-/spl mu/m device feature size, also gives fast access time. The properly controlled bit line swing voltage provides reliable and fast readout operation. The chip size of the SRAM is 2.7/spl times/3.5 mm.  相似文献   

2.
Through a metal option, a 256K word/spl times/1-bit and a 64K word/spl times/4-bit CMOS SRAM organization has been obtained. A fast access time has been achieved with a short bit-line structure and a data-bus precharging technique which minimize the bit-line and data-bus delay. A feedback-controlled address-transition-detector circuit has been adopted to assure the fast access time in the presence of address skew. A 1.0-/spl mu/m double-polysilicon and single-metal process technology with a polycide gate offers a memory cell size of 90 /spl mu/m/SUP Z/ and a chip size of 47.4 mm/SUP 2/.  相似文献   

3.
A 35-ns 8K/spl times/8 CMOS SRAM with address-transition detection design techniques and a novel architecture is described. This design uses a 1.5-/spl mu/m HCMOS twin-well process with polycide gates. A technique for generating internal timing which is impervious to address skew and glitches has been developed. At long cycle times the circuit automatically powers down to a 8-mA active current level with the part selected.  相似文献   

4.
A fast and low-power full-CMOS 256 K (32 K/spl times/8-b) static RAM is described. Typical access time is 40 ns with a 100-pF load. Power dissipation is 100 mW at 10 MHz and <1 /spl mu/W in standby mode. The low standby power has been achieved by introducing a novel six-transistor, polysilicon-interconnected, double-cross-coupled cell. A novel output buffer design, a data-transition detection (DTD) circuit, and several other circuit techniques are introduced to obtain the speed and low active power dissipation. This chip is made in a 1.3-/spl mu/m, twin-tub, single-poly, double-metal technology with a p epi layer on p/SUP +/ substrate.  相似文献   

5.
A high-speed 11-mm/SUP 2/ 4K/spl times/4 CMOS static RAM fabricated developed. This circuit uses improved circuit techniques to with a single-polysilicon, single-metal process has been obtain a typical 18-ns access time with only 250 mW of active power. Among the topics discussed are the smallest single-polysilicon static RAM cell reported to date; the use of address transition assistance for equalization and boosting; a short-delay, positive-feedback boosted word line; high-speed predecoded row and column decoders; new fully compensated bit-line loads and column presence amps; and an easily implemented redundancy scheme using laser fusing techniques.  相似文献   

6.
The design and performance of a 32 K/spl times/8-b CMOS static RAM (SRAM) are presented. The design features a selectively pumped p-well array. Using this array technology, high-impedance polysilicon resistor loads can be used to reduce the array standby current by three orders of magnitude, and the device characteristics can be optimized to achieve high speed in the peripheral circuits. A unique divided-word-line architecture with shared sense amplifiers is used to achieve high-speed read operation. The read speed is further enhanced by a novel quasistatic equalization that minimizes peak current. A high-speed write circuit with a write-to-read transition detection is used to achieve a fast write operation. An advanced 1.2-/spl mu/m double-level-metal CMOS technology was used to fabricate the devices. The access time is 21 ns and the active power is 330 mW at 22 MHz.  相似文献   

7.
A 1-Mb DRAM with 128K/spl times/8 bit organization is described. In designing the circuit, half V/SUB cc/ bit line precharge with dummy reverse circuits was adopted for noise reduction. The noise is estimated using a three-dimensional capacitance calculation. In realizing the chip, a 1-/spl mu/m NMOS process with double-level aluminum wiring was used.  相似文献   

8.
A 256 K (32 K×8) CMOS static RAM (SRAM) which achieves an access time of 7.5 ns and 50-mA active current at 50-MHz operation is described. A 32-block architecture is used to achieve high-speed access and low power dissipation. To achieve faster access time, a double-activated-pulse circuit which generates the word-line-enable pulse and the sense-amplifier-enable pulse has been developed. The data-output reset circuit reduces the transition time and the noise generated by the output buffer. A self-aligned contact technology reduces the diffused region capacitance. This RAM has been fabricated in a twin-tub CMOS 0.8-μm technology with double-level polysilicon (the first level is polycide) and double-level metal. The memory cell size is 6.0×11.0 μm2 and the chip size is 4.38×9.47 mm 2  相似文献   

9.
This paper describes the circuit design and process techniques used to produce a 35-ns 2K /spl times/ 8 HMOS static RAM aimed at future high-end microprocessor applications. The circuit design uses predecoding of the row and column decoder/driver circuits to reduce active power, address-transition detection schemes to equalize internal nodes, and dynamic depletion-mode configurations for increased drive and speed. The technology is 2.5-3.0-/spl mu/m design rule HMOS employing an L/SUB eff/ of 1.7 /spl mu/m, t/SUB ox/=400 /spl Aring/, double-poly resistor loads, RIE and plasma etching, and wafer-stepper lithography. Using these techniques an access time of 35 ns, dc active power of 65 mA, standby power of 14 mA, and die size of 37.5K mil/SUP 2/ has been achieved. The cell size is 728 /spl mu/m/SUP 2/.  相似文献   

10.
A 1-Mbit CMOS full-featured EEPROM using a 1.0- mu m triple-polysilicon and double-metal process is described. The design is aimed at developing a manufacturable 120-ns 1-Mbit EEPROM with small chip size. Therefore, an advanced memory cell with high read current, an improved differential sensing technique, and an efficient ECC scheme are developed. The differential sensing amplifier utilizes the output of a current sensing amplifier connected to unselected memory as a reference level. The cell size is 3.8*8 mu m/sup 2/ and the chip size is 7.73*11.83 mm/sup 2/. The device is organized as either 128 K*8 or 64 K*16 by via-hole mask options. A 256-byte/128-word page-mode programming is implemented.<>  相似文献   

11.
A 4-Mb SRAM with a 15-ns access time and a uniquely selectable (×4 or ×1) bit organization has been developed based on a 0.55-μm triple-polysilicon double-metal CMOS technology. An input-controlled PMOS-load (ICPL) sense amplifier, Y-controlled bit-line loads (YCLs), and a transfer word driver (TDW) are three key circuits which have been utilized in addition to the 0.55-μm CMOS technology to achieve the remarkable access time of 15 ns. Bit organization of either ×4 or ×1 can be selected purely electrically, and does not require any pin connection procedure  相似文献   

12.
A 1-Mb CMOS static RAM with a 256 K word×4-bit configuration has been developed. The RAM was fabricated using 0.8-μm double-poly and double-aluminum twin-well CMOS technology. A small cell size of 5.2 μm×8.5 μm and a chip size of 6.15 mm×15.21 mm have been achieved. A fast address access time of 15 ns was achieved using novel circuit techniques: a PMOS-load decoder and a three-stage dynamic gain control sense amplifier combined with an equalization technique and feedback capacitances. A low active current of 50 mA at 20 MHz and low standby currents of 15 mA (TTL) and 2 μA (CMOS) were also attained  相似文献   

13.
A 1-Mb (128 K×8-bit) CMOS static RAM (SRAM) with high-resistivity load cell has been developed with 0.8-μm CMOS process technology. Standby power is 25 μW, active power 80 mW at 1-MHz WRITE operation, and access time 46 ns. The SRAM uses a PMOS bit-line DC load to reduce power dissipation in the WRITE cycle, and has a four-block access mode to reduce the testing time. A small 4.8×8.5-μm2 cell has been realized by triple-polysilicon layers. The grounded second polysilicon layer increases cell capacitance and suppresses α-particle-induced soft errors. The chip size is 7.6×12.4 mm2  相似文献   

14.
A 16/spl times/16-b parallel multiplier fabricated in a 0.6-/spl mu/m CMOS technology is described. The chip uses a modified array scheme incorporated with a Booth's algorithm to reduce the number of adding stages of partial products. The combination of scaled 0.6-/spl mu/m CMOS technology and advanced arithmetic architecture achieves a multiplication time of 7.4 ns while dissipating only 400 mW. This multiplication time is shorter than other MOS high-speed multipliers previously reported and is comparable to those for advanced bipolar and GaAs multipliers.  相似文献   

15.
A 1-Mbit CMOS static RAM (SRAM) with a typical address access time of 9 ns has been developed. A high-speed sense amplifier circuit, consisting of a three-stage PMOS cross-coupled sense amplifier with a CMOS preamplifier, is the key to the fast access time. A parallel-word-access redundancy architecture, which causes no access time penalty, was also incorporated. A polysilicon PMOS load memory cell, which had a large on-current-to-off-current ratio, gave a much lower soft-error rate than a conventional high-resistance polysilicon load cell. The 1-Mbit SRAM, fabricated using a half-micrometer, triple-poly, and double-metal CMOS technology, operated at a single supply voltage of 5 V. An on-chip power supply converter was incorporated in the SRAM to supply a partial internal supply voltage of 4 V to the high-performance half-micrometer MOS transistors.<>  相似文献   

16.
The authors describe the first high-performance, high-density ECL SRAM (emitter-coupled-logic static random-access memory) compatible with battery backup techniques. The 256K device has a measured access time of 8 ns. Fabricated in a 0.8-μm BiCMOS process, the chip uses 117-μm 2, full-CMOS, six-transistor memory cells and measures 6.5×8.15 mm2. The design methodology described here illustrates the extent to which bipolar devices can be integrated into the periphery of a CMOS memory array. This integration was achieved through the use of a novel sensing scheme which provided three stages of bipolar differential sensing, with the first stage of sensing taking place directly on the bit lines  相似文献   

17.
A high-speed 256 K (32 K/spl times/8) CMOS static RAM (SRAM) is described. Precharging and equalization schemes are implemented with address-transition-detection (ATD) techniques. With a differential sensing circuitry, a 23-ns access time is achieved (at V/SUB cc/=5 V and 25/spl deg/C) for addresses and chip-select clocks. The operating current is 36 mA in the READ cycle and 28 mA in the WRITE cycle, at 10-MHz cycling frequency. A four-transistor memory cell is designed with double-polysilicon and double -metal layers to achieve high performances. Versatile redundancy schemes consisting of polysilicon laser fuses, logical circuitry, and novel enable/disable controls are designed to repair defective cells. A compensation circuit is used to optimize writing parameters for redundant columns.  相似文献   

18.
A 32K/spl times/8-bit CMOS static RAM using titanium polycide technology has been developed. The RAM has a standby power of 10 /spl mu/W, an active power of 175 mW, and an access time of 55 ns. The standby power has been achieved by an optimization of polysilicon resistors in a memory cell. A digit line circuit controlled by three internal clocks contributes to reduction of active power. The cell size has been reduced to 89.5 /spl mu/m/SUP 2/ by using both a buried isolation and a polycide GND line. Furthermore a simplified address-transition detection circuit and a single data bus configuration result in a small layout area, thus offering a 40.7 mm/SUP 2/ die size.  相似文献   

19.
A Hi-CMOSII static RAM with 8K word by 8 bit organization has been developed. The RAM is fabricated using double polysilicon technology and p- and n-channel transistors having a typical gate polysilicon length of 2 /spl mu/m. The device was realized using low-power high-speed-oriented circuit design and a new redundancy circuit that utilizes laser diffusion programmable devices. The new RAM has an address access time of 65 ns, operating power dissipation of 200 mW, and standby dissipation of 10 /spl mu/W.  相似文献   

20.
A 5-V full-CMOS 1-Mb SRAM (static random-access memory) is described. The access time is 25 ns with 30-pF load, and power dissipation is 75 mW at 10 MHz and less than 1 μW in standby mode. The chip is made in a 0.7-μm twin-tub, single-poly, double-metal technology on p/p+ epi substrate. Cascoding of NMOS devices and special timing techniques are used to suppress hot-electron degradation. The authors describe circuit techniques that obtain low active power dissipation and high speed for a byte-wide part  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号