首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Differential Sensitivity of Mosquito Taxa to Vegetable Tannins   总被引:1,自引:0,他引:1  
The sensitivity of larval Culicidae to vegetable tannins was investigated in different taxa representative of the fauna from alpine hydrosystems (Aedes rusticus, Culex pipiens) and foreign noxious fauna (Aedes aegypti, A. albopictus). Bioassays reveal that tannic acid at concentrations of 0.1–6 mM is significantly more toxic for C. pipiens than for Aedes taxa, and A. aegypti is more sensitive than A. albopictus and A. rusticus. Comparison of the rank order of sensitivity among taxa with the associated levels of cytochrome P-450, esterase, and glutathione-S-transferase activities suggests that cytochrome P-450 and esterases may be involved in the detoxification of tannins. A possible involvement of these detoxifying enzymes is also revealed in vivo by the synergistic effects of S,S,S-tributyl phosphorotrithioate (esterase inhibitor) and piperonyl butoxide (P-450 inhibitor). The differential sensitivity to tannins among taxa is discussed in terms of ecological implications within mosquito communities from alpine hydrosystems, where the acquisition of tannins–detoxifying enzymatic systems may be considered as a key innovation.  相似文献   

2.
Dietary leaf litter chemistry is known to play an important ecotoxicological role in the plant–mosquito interaction in subalpine flooded areas surrounded by vegetation because of differential larvicidal effects of insoluble polyphenols formed during the leaf decaying process. This dietary interaction was investigated through comparative evaluation of the role of toxic/nontoxic leaf litter in both larval foraging and feeding behavior, by using different samples of decomposed alder leaf litter and larval Aedes aegypti as experimental references. Track analysis showed significant differences in larval foraging behavior in the absence or presence of leaf litter. Comparative alimentary preference investigations and further track analysis suggested that larvae are unable to detect leaf litter toxicity. These characteristics of the larval behavioral feeding pattern suggested that: (1) decomposed leaf litter may be involved as an important attractive food source in the habitat selection and evolutionary history of culicids, and (2) preingestive behavioral mechanisms appear to be minimally involved in the differential larval dietary adaptation to toxic leaf litter. These results may have interesting consequences for culicid biological control.  相似文献   

3.
Hot water-extraction was performed on decomposed leaf litter in order to solubilize the toxic fraction involved in the dietary interaction against mosquito larvae in subalpine breeding sites. The toxic fraction was partially extracted by water with an optimum temperature of 60°C and recovered in an insoluble form. Phytochemical characterization was achieved through differential enzymatic hydrolyses, using the laccase mediator delignifying system, and aluminum chloride chelation monitored by standard bioassays; comparative spectrophotometric analyses in ultraviolet light after solubilization in acetyl bromide; and comparative reversed-phase high-performance liquid chromatography of the phenolic aldehydes after alkaline nitrobenzene oxidation. The results suggested the involvement of ligninlike compounds in the toxicity of the isolated fraction. Toxicity of this fraction appeared far stronger than that of the crude leaf litter. The involvement of this ligninlike fraction in the dietary toxicity of leaf litter against larval mosquito was then investigated.  相似文献   

4.
Decaying alder leaves in water from Alpine Aedes breeding sites, particularly their toxicity to larval Culicidae, were investigated and characterized with comparative toxicological and chemical methods. Bioassays that used third-instar Aedes aegypti as a reference species indicated that the larvicidal effect of crude leaf litter varied with decaying age of the litter, while no toxicity was detected from leaching water of the mosquito breeding sites. Ten-month-old leaf litter was the most toxic. Comparison of the different soluble and insoluble fractions obtained after sequential extraction of decomposed litter allowed us to localize the toxicity factor to an insoluble cell-wall fraction. The toxicity seems to be linked to phenolic activity. It is higher than that found for tannic acid solutions used as a reference to mimic the larvicidal effects of the molecules naturally occurring in decaying litter. The pattern of establishing the larvicidal effect of alder leaf litter in water of Alpine Aedes breeding sites is discussed.  相似文献   

5.
A Rutaceae-feeding swallowtail butterfly. Papilio xuthus L., feeds on various rutaceous plants but always rejects Orixa japonica Thunb. (Rutaceae). Females were strongly deterred from laying eggs by a methanolic extract of O. japonica leaves. Larvae also rejected a diet leaf medium impregnated with O. japonica leaf extracts. Several components in the water-soluble fraction of the leaf extract were found to deter both oviposition and feeding responses. Two major deterrent compounds were characterized as 5-[[2-O-(beta-D-apiofuranosyl)-beta-D-glucopyranosyl]oxy]-2-hydroxybenzoic acid and adisyringoyl aldaric acid. These compounds induced potent deterrence of both oviposition and larval feeding by P. xuthus, which suggests a congruent chemosensory mechanism of allomonal chemicals acting on both female tarsal chemoreceptors and larval maxillary taste receptors.  相似文献   

6.
Experiments were performed to assess the effect of four foliar essential oil phenotypes from a coastal redwood (Sequoia sempervirens) population on isolates ofPleuroplaconema sp., its ubiquitous endophytic fungus. Isolates were exposed to essential oils extracted from their trees of origin and from other trees. The hypotheses tested were: (1) redwood leaf essential oils extracted from distinct trees would have a differential effect onPleuroplaconema sp. growth, and (2) growth of isolates from a particular tree would be differentially affected when exposed to essential oil phenotypes different from that of their tree of origin. The essential oil phenotypes were differentially inhibitory, but the pattern of inhibition did not support the second hypothesis.Pleuroplaconema sp. showed low average tolerance to all of the essential oils; two phenotypes reduced growth 70–80% and the other two 50–60% at the dose tested. The overall growth response of individual isolates to all treatments suggests that more than one fungus genotype per tree was represented in the experiment. The variability in tolerance of individual isolates to the essential oils was low for three phenotypes. The low tolerance ofPleuroplaconema sp. to redwood essential oils, in spite of its predominance and specialization in this conifer, is discussed considering: (1) the possible pathogenic ancestry of this fungus, and (2) that essential oil phenotypes may be important in controlling the activity ofPleuroplaconema sp. after it colonizes the leaf.  相似文献   

7.
The development of toxicity produced by vegetable litter of four forest species (Quercus robur L.,Pinus radiata D.Don.,Eucalyptus globulus Labill, andAcacia melanoxylon R.Br.) was studied during the decomposition process in each of the soils where the species were found. The toxicity of the extracts was measured by the effects produced on germination and growth ofLactuca saliva L. var. Great Lakes seeds. The phenolic composition of the leaves of the four species was also studied using high-performance liquid chromatographic analysis (HPLC). It was verified that toxicity was clearly reflected in the first stages of leaf decomposition inE. globulus andA. melanoxylon, due to phytotoxic compounds liberated by their litter. At the end of half a year of decomposition, inhibition due to the vegetable material was not observed, but the soils associated with these two species appeared to be responsible for the toxic effects. On the other hand, the phenolic profiles are quite different among the four species, and greater complexity in the two toxic species (E. globulus andA. melanoxylon) was observed.  相似文献   

8.
Jasmonic acid (JA) is a key hormone involved in plant defense responses. The effect of JA treatment of cabbage plants on their acceptability for oviposition by two species of cabbage white butterflies, Pieris rapae and P. brassicae, was investigated. Both butterfly species laid fewer eggs on leaves of JA-treated plants compared to control plants. We show that this is due to processes in the plant after JA treatment rather than an effect of JA itself. The oviposition preference for control plants is adaptive, as development time from larval hatch until pupation of P. rapae caterpillars was longer on JA-treated plants. Total glucosinolate content in leaf surface extracts was similar for control and treated plants; however, two of the five glucosinolates were present in lower amounts in leaf surface extracts of JA-treated plants. When the butterflies were offered a choice between the purified glucosinolate fraction isolated from leaf surface extracts of JA-treated plants and that from control plants, they did not discriminate. Changes in leaf surface glucosinolate profile, therefore, do not seem to explain the change in oviposition preference of the butterflies after JA treatment, suggesting that as yet unknown infochemicals are involved.  相似文献   

9.
The European grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae), is a polyphagous insect able to develop on grapes and wild plants. We tested the hypothesis that the parasitoid Dibrachys cavus (Hymenoptera: Pteromalidae) uses the larval frass in its host search. A two-armed olfactometer was used to measure the attractiveness of L. botrana larvae, their silk, or their frass after larvae were fed on different host plants. Frass of three Lepidoptera (L. botrana, Eupoecillia ambiguella, Sphinx ligustri) and one Orthoptera (Chorthippus brunneus) was assayed, but only L. botrana was used to test an effect of the larval host plant (two grape cultivars and three other plant species) to D. cavus females. Larvae without frass did not attract D. cavus whatever their origin, but their frass was attractive at a dose of 2–3 days equivalent of larval frass production. The silk produced by a single larva (L. botrana) was not attractive to D. cavus. The parasitoid was most attracted to the odor of S. ligustri; the frass of L. botrana was more attractive than that of E. ambiguella, irrespective of the species on which D. cavus had been reared. There was no difference in attractiveness of frass collected from L. botrana raised on food containing different plants. Chemical extracts using five different polarity solvents (acetone, dichloromethane, hexane, methanol, and water) differed in attractiveness to D. cavus. Water and dichloromethane were the most attractive. This suggests that a complex volatile signal made from intermediate to polar volatiles may be involved in attraction. D. cavus used frass to discriminate between different potential host species. Our results revealed that the larval food of L. botrana did not modify frass attractiveness, but that the moth species did.  相似文献   

10.
Previous experiments demonstrated an oviposition-deterring effect of larval frass in the Egyptian cotton leaf worm,Spodoptera littoralis (Boisd.). In this study, females were shown to perceive the oviposition-deterring substance(s) with their antennae. During dark, airtight, and cold (–10 °C) storage, the deterrent was persistent for at least 395 days. On the other hand, larval frass retained its activity for only two days when applied to cotton leaves. The deterrent activity of frass was independent of larval density. Frass of larvae reared at high densities deterred oviposition as well as frass of larvae feeding separately or in small groups. For significant oviposition deterrence, the minimum amount of frass was in the range of 5–10 mg frass per cotton leaf. An acetone extract of larval frass was highly deterrent, in contrast to extracts prepared with water, ethanol, chloroform, or pentane.  相似文献   

11.
In this study, we used plant vascular architecture as a framework from which to predict induced changes in resource quality for Lema trilinea feeding on the host plant Solanum dulcamara at both low and high levels of herbivory. The systemic patterns of allocation of dye from a capillary tube inserted onto the petiole of the first true leaf and sections of the stem were used to establish the degree of vascular connectivity among different leaf positions. Induced changes in the activity of two defensive proteins, proteinase inhibitor (PI) and polyphenol oxidase (PPO), as well as larval L. trilinea performance, were measured in weakly or strongly connected leaves on plants with the first leaf damaged or undamaged by adult L. trilinea. At high levels of herbivory, larval performance decreased on the sixth leaf, which has strong vascular connections to the first leaf, yet increased on the fifth leaf, which has weak vascular connections to the first leaf. PPO activity increased in both the fifth and sixth leaf, while PI activity decreased in the fifth leaf although remaining unchanged in the sixth leaf. At low levels of herbivory, a decrease in larval performance was observed in the sixth leaf, but no change occurred in the weakly connected fifth leaf. Hence, plant vascular architecture clearly predicted within-plant changes in resource quality following only small amounts of herbivore damage.  相似文献   

12.
Leaf extracts ofBunias orientalis were shown to inhibit seed germination of a variety of cultivar plant species and of species cooccurring withB. orientalis in the field. Root exudate solutions and leaf litter leachates ofB. orientalis were tested for their allelopathic activity using seedling growth assays. Additionally, in comparative seedling growth assays soil cores removed from denseB. orientalis stands were tested bimonthly for elevated allelopathic effects. The impact of root exudates on seedling growth was generally weak and varied between species. Similar results were obtained for the effect ofB. orientalis leaf litter leachates on seedlings grown in sand culture relative to the effect of leaf litter leachates of a plant species mixture. When soil as a growth substrate was used, no consistent differences in seedling growth were obtained between the two litter leachate treatments. In the soil core experiment seedlings grown in soil cores collected from a denseB. orientalis stand unexpectedly showed better performance than seedlings grown in soil cores collected from a nearby mixed plant stand withoutB. orientalis, at least in early spring and late autumn. Predominating nutrient effects are, therefore, assumed to conceal a potentially increased allelopathic effect of soil beneath denseB. orientalis stands. It is concluded that other factors than allelopathy must be investigated to explain the rapid establishment of dense stands of this alien plant species.  相似文献   

13.
Many plant secondary compounds induce detoxification activity in herbivorous insects. Although inducibility may be advantageous as a means of reducing costs associated with maintenance of metabolism, another benefit of inducibility is that it may allow insects to tailor their detoxification profiles to multiple substrate toxins in their diets. The parsnip webworm, Depressaria pastinacella, must contend with many types of furanocoumarins, toxins present in abundance in all of its host plants. Previous studies have documented that cytochrome P-450s are responsible for metabolism of furanocoumarins in this species and that this overall activity is inducible. In this study, we examined the effects of ingestion of single furanocoumarins on metabolism of multiple furanocoumarins and the ability of webworms to adjust their metabolism profiles to match artificial diets with furanocoumarin content differing qualitatively and quantitatively from the average content found in their principal host. That detoxification rates of newly molted sixth instars prior to feeding did not differ from those of actively feeding fifth or sixth instars suggests that constitutive activities of furanocoumarin-metabolizing enzymes are maintained in the absence of substrates. All of the induction assays in this study were performed with ultimate instars. Each of the furanocoumarins assayed was found to induce metabolism of five different furanocoumarin substrates; however, the induction profile was independent of the inducing agent. Consistent with this finding, webworms were incapable of matching their detoxification profiles to diets with different furanocoumarin compositions. Thus, the profile of detoxification within individuals of this species appears to be genetically fixed, although there is considerable variation in profiles among individuals.  相似文献   

14.
Laboratory and greenhouse bioassays were used to test for inhibitory effects of senescent and decomposed leaves and aqueous extract from bilberry (Vaccinium myrtillus L.) against seed germination and seedling growth of aspen (Populus tremula L.), birch (Betula pendula Roth.), Scots pine (Pinus sylvestris L.), and Norway spruce [Picea abies (L.) Karst.]. Aqueous extracts from bilberry leaves were inhibitory to aspen seed germination and seedling growth and also induced root damage and growth abnormalities. Addition of activated carbon removed the inhibitory effects of extracts. Senescent leaves reduced pine and spruce seed germination, but rinsing of seeds reversed this inhibition. Senescent leaves were more inhibitory than decomposed leaf litter, suggesting that the inhibitory compounds in bilberry leaves are relatively soluble and released at early stages during decomposition. Spruce was generally less negatively affected by litter and aqueous extracts than the other tested species. This study indicates that chemical effects of bilberry litter have the potential to inhibit tree seedling recruitment, but these effects were not consistently strong. Phytotoxicity is unlikely to be of critical importance in determining success for spruce seedling establishment.  相似文献   

15.
The surface of birch leaves contains glandular trichomes that secrete exudates containing flavonoid aglycones. We investigated the biological activities of white birch (Betula pubescens) leaf surface exudates against larvae of the autumnal moth, Epirrita autumnata, a common insect pest of birch. We found that tree-specific mortality (up to 100%) of first instar larvae correlated strongly with the tree-specific contents of surface flavonoid aglycones (r(s) = 0.905) in emerging leaves. We also found that first instars clearly preferred birch buds from which surface exudates had been removed. In addition, the duration of the first instar was shortened by 29%, and the weights and relative growth rates of first instars improved by 8% and 52%, respectively, as a result of removal of the exudates from their leaf diet. The correlation of tree-specific foliar contents of flavonoid aglycones, especially 5-hydroxy-4',7-dimethoxyflavanone, with changes in larval performance, suggests that flavonoid aglycones are responsible for the changes observed in first instar larval performance. The results show that chemical characteristics of birch leaves are effective against neonate E. autumnata larvae. However, the removal of leaf surface exudates from fully expanded leaves did not affect the leaf acceptance for the voracious fifth instars. This is probably a result of reduction in contents of flavonoid aglycones compared to those of emerging leaves.  相似文献   

16.
The allelopathic effects ofProsopis juliflora were studied both in the laboratory and in nature and compared with that ofProsopis cineraria to understand the chemical nature of allelochemics. Both species occupy the same habitats butP. cineraria does not appear to have any toxic effect on other plants under its canopy.P. juliflora is highly allelopathic and does not allow the growth of any other species. Leaf extracts and leaf leachates ofP. juliflora were inhibitory. Decaying leaves were also inhibitory at early stages of decomposition. Live roots were not found to be inhibitory in cogermination and interplanting of seeds. Chemical investigation of the extracts showed the allelopathic compounds to be phenolic in nature in both the species. Slow decomposition and heavy accumulation of leaf litter belowP. juliflora may possibly result in accumulation of toxic substances in soil layers, inhibiting growth of other species.  相似文献   

17.
Atmospheric CO2 concentrations have increased dramatically over the last century and continuing increases are expected to have significant, though currently unpredictable, effects on ecosystems. One important process that may be affected by elevated CO2 is leaf litter decomposition. We investigated the interactions among atmospheric CO2, herbivory, and litter quality within a scrub oak community at the Kennedy Space Center, Florida. Leaf litter chemistry in 16 plots of open-top chambers was followed for 3 years; eight were exposed to ambient levels of CO2, and eight were exposed to elevated levels of CO2 (ambient + 350 ppmV). We focused on three dominant oak species, Quercus geminata, Quercus myrtifolia, and Quercus chapmanii. Condensed tannin concentrations in oak leaf litter were higher under elevated CO2. Litter chemistry differed among all plant species except for condensed tannins. Phenolic concentrations were lower, whereas lignin concentrations and lignin/nitrogen ratios were higher in herbivore-damaged litter independent of CO2 concentration. However, changes in litter chemistry from year to year were far larger than effects of CO2 or insect damage, suggesting that these may have only minor effects on litter decomposition.  相似文献   

18.
The foliage of sweetbay magnolia (Magnolia virginana) contains at least two biologically active phenylpropanoid compounds (magnolol and a biphenyl ether) that are toxic to a number of generalist insect herbivores. These compounds have little effect on caterpillars of the sweetbay silkmoth, C. securifera, which is a specialist on sweetbay, but they are toxic to two closely related silkmoths, C. angulifera and C. promethea. To understand the influence of phytochemistry on the evolution of host use and feeding specialization in Callosamia, the detoxification capability of C. securifera was compared with that of C. angulifera and C. promethea. Degradation of magnolol and the biphenyl ether by midgut homogenate of the sweetbay specialist was NADPH-dependent and inhibited by piperonyl butoxide, suggesting the involvement of cytochrome P-450 detoxification enzymes. Both were degraded three times faster in the specialist compared to the unadapted herbivores. Higher rates of degradation could not be induced in the polyphagous C. promethea by a mixture of magnolol and the biphenyl ether or by the P-450 inducer pentamethylbenzene, nor did activity vary significantly when larvae were reared on different host plants. Use of sweetbay by Callosamia silkmoths appears to be dependent on their ability to degrade host toxins rapidly via midgut detoxification enzymes. Moreover, the intraspecific comparisons contradict the common prediction that higher levels of cytochrome P-450 activity are found in more polyphagous species; instead, P-450 activity is more closely associated with specific chemical attributes of the herbivores' host plants.  相似文献   

19.
Leaf quality of the mountain birch (Betula pubescens ssp.tortuosa) for herbivores was studied at several hierarchical levels: among trees, among ramets within trees, among branches within ramets, and among short shoots within branches. The experimental units at each level were chosen randomly. The indices of leaf quality were the growth rate of the larvae of a geometrid,Epirrita autumnata, and certain biochemical traits of the leaves (total phenolics and individual phenolic compounds, total carbohydrates and individual sugars, free and protein-bound amino acids). We also discuss relationships between larval growth rate and biochemical foliage traits. Larval growth rates during two successive years correlated positively at the level of tree, the ramet, and the branch, indicating that the relationships in leaf quality remained constant between seasons both among and within trees. The distribution of variation at different hierarchical levels depended on the trait in question. In the case of larval growth rate, ramets and short shoots accounted for most of the explained variation. In the case of biochemical compounds, trees accounted for most of the variance in the content of total phenolics and individual low-molecular-weight phenolics. In the content of carbohydrates (total carbohydrates, starch, fructose, glucose, and sucrose) and amino acids, variation among branches was generally larger than variation among trees. Variation among ramets was low for most compounds. No single leaf trait played a paramount role in larval growth. Secondary compounds, represented by phenolic compounds, or primary metabolites, particularly sugars, may both be important in determining the suitability of birch leaves for larvae. If phenols are causally more important, genet-specific analyses of foliage chemistry are needed. If sugars are of primary importance, within-genet sampling and analysis of foliage chemistry are necessary.  相似文献   

20.
Twelve Peruvian maize, Zea mays, accessions were selected because of their relatively high level of field resistance to first-generation European corn borer (ECB), Ostrinia nubilalis, larval leaf-feeding. Water extracts of freeze-dried, powdered, leaf tissue were incorporated into a standard ECB diet, fed to larvae, and the effects on larval growth, development, and fecundity were measured. Larval and pupal weights were monitored as were the time elapsed in the larval, pupal, and adult stages. Adult fecundity and egg fertility were recorded. The experiment was a randomized block design (larvae and pupae) or a completely randomized design (adults) and analyzed with ANOVA ( = 0.05). Pairwise comparisons were made between groups of insects grown on diets containing extracts from the Peruvian lines, a standard diet, or diets containing extracts of a known susceptible inbred, and a known resistant inbred line. Survival was analyzed with a chi-squared test ( = 0.05). Two Peruvian accessions significantly reduced female larval and pupal weights, extended pupal and adult development time, and decreased survival of pupae and adults. Water extracts also had a pronounced impact on males; two accessions significantly reduced pupal weight and extended the time required to pupate, and one reduced male survival to adults. The results indicate that water-soluble factors from resistant Peruvian accessions inhibit the growth, developmental time, and survival of ECB. These resistance factors could be useful in the development of maize germplasm with insect-resistant traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号