首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High neutron economy, on line refueling and channel design result in the unsurpassed fuel cycle flexi-bility and variety for CANDU reactors. According to the Chinese national conditions that China has both PWR and CANDU reactors and the closed cycle policy of reprocessing the spent PWR fuel is adopted, one of the advanced nu-clear fuel cycles of PWR/CANDU synergism using the reprocessed uranium of spent PWR fuel in CANDU reactor is proposed, which will save the uranium resource (-22.5%), increase the energy output (-41%), decrease the quantity of spent fuels to be disposed (-2/3) and lower the cost of nuclear poower, Because of the inherent flexibility of nuclearfuel cycle in CANDU reactor, and the low radiation level of recycled uranium(RU), which is acceptable for CANDU reactor fuel fabrication, the transition from the natural uranium to the RU can be completed without major modifica-tion of the reactor core structure and operation mode.It can be implemented in Qinshan Phase Ⅲ CANDU reactors with little or no requirement of big investment in new design. It can be expected that the reuse of recycled uranium of spent PWR fuel in CANDU reactor is a feasible and desirable strategy in China.  相似文献   

2.
为研究钍铀燃料在CANDU6堆中的应用,采用DRAGON/DONJON程序,对使用离散型钍铀燃料37棒束组件的CANDU6堆进行时均堆芯分析。结果表明,组件采用235U富集度为2.5%的铀棒以及第1、2、3圈布置钍棒的37棒束组件,堆芯在8棒束换料、3个燃耗分区的方案下,组件的冷却剂空泡反应性较使用天然铀的37棒束组件(NU-37组件)与采用混合钍铀元件棒的37棒束组件更负;堆芯最大时均通道/棒束功率满足小于6700?kW/860?kW的限值;燃料转化能力比采用NU-37组件时更高;卸料燃耗可到达13400?MW·d/t(U)。研究表明,所设计的离散型钍铀燃料37棒束组件可用于现有CANDU6堆芯,且无需对堆芯结构及控制机构作重大改造;燃料组件和堆芯设计方案可为钍铀燃料在CANDU6堆芯的应用提供参考。   相似文献   

3.
PWR/CANDU联合核燃料循环研究   总被引:2,自引:0,他引:2  
根据我国已拥有PWR和CANDU核电站的具体情况 ,提出一种PWR/CANDU联合核燃料循环的策略 ,即把压水堆的乏燃料后处理后的回收铀 (RU)用作为CANDU堆的核燃料 ,既可节约铀资源 ,提高燃料的能量输出 ,又减少了废燃料的处置量 ,可大大降低核电成本。由于CANDU堆对核燃料循环的固有灵活性 ,堆芯结构及运行方式不需作重大改变 ,即可完成从天然铀到RU的过渡。又由于RU较低的放射性活度 ,这对CANDU堆的燃料制造是可以接受的 ,因而只需对现有燃料制造生产线稍加屏蔽措施 ,对运输和运行中燃料管理操作等都勿须改变。因而这一策略是具有重大经济效益和吸引力的  相似文献   

4.
回收铀(RU)是一种重要的核能资源,随着核电发展和铀资源价格的上涨将更加受到重视,迄今为止国际上尚未很好地解决其有效利用问题。鉴于我国既有压水堆又有重水堆的现状,本文提出利用重水堆烧RU的设想,开发了一种与天然铀燃料中子学等效的由RU和贫铀(DU)混合而得的等效天然铀(NUE)燃料,并在秦山运行重水堆上开展随堆示范验证试验,以积累RU利用相关运行经验,为后续全堆应用提供了关键的技术支持。  相似文献   

5.
熊文纲  李文新  王敏 《核技术》2012,(5):395-400
在钍铀燃料循环过程中生成的232U的衰变子体具有强放射性,对燃料循环具有重要影响。本工作采用ORIGEN2、SCALE5程序,以及基于Bateman方法编写的程序,分析了在不同条件下,热堆中钍反应生成232U的规律。一般情况下,232U主要由232Th的(n,2n)反应链生成,而在中子能谱更软情况下,230Th对232U生成贡献增大;CANDU型重水堆和压水堆的含钍燃料组件的燃耗计算结果表明,铀中232U含量随燃耗深度增加而变大,同时初始230Th/Thtotal大小直接线性影响卸料燃耗时232U/Utotal或232U/233U。  相似文献   

6.
对压水堆乏燃料后处理回收铀(RU)在秦山三期CANDU堆中应用的可行性和经济性进行分析。使用ORIGEN2程序.对后处理回收铀在生产后放置不同时间后核素的成份和放射性活度进行了计算。证明RU燃料元件生产的放射性水平是可以接受的。使用DRAGON/DONJON程序对应用RU的秦山三期CANDU堆的时均堆芯和瞬时堆芯校验分析表明:采用简单的2燃耗区,2、4棒束的换料方案能满足最大通道功率、最大棒束功率限制。通过放射性分析和堆芯物理分析可以看出,秦山三期CANDU堆在不改变堆芯结构及运行模式的条件下,从天然铀(NU)燃料过渡到RU燃料是可行的。通过对秦山三期CANDU堆应用RU的经济性分析,可以看出PWR/CANDU联合核燃料循环的策略既可节约铀资源(23%),提高燃料的能量输出(4l%).又减少了废燃料的处置量(66%).可大大降低核电成本。  相似文献   

7.
The thorium fuel recycle scenarios through a Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO2UO2 and heterogeneous ThO2UO2–DUPIC fuels. The recycling was performed with dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, a thorium fuelled CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products for the multiple recycling fuel cycle were estimated and compared to those of a once-through fuel cycle.  相似文献   

8.
In order to check and improve the quality of the Romanian CANDU fuel, an assembly of six CANDU fuel rods has been subjected to a power ramping test in the 14 MW TRIGA reactor at INR. After testing, the fuel rods have been examined in the hot cells using post-irradiation examination (PIE) techniques such as: visual inspection and photography, eddy current testing, profilometry, gamma scanning, fission gas release and analysis, metallography, ceramography, burn-up determination by mass spectrometry, mechanical testing. This paper describes the PIE results from one out of the six fuel rods. The PIE results concerning the integrity, dimensional changes, oxidation, hydriding and mechanical properties of the sheath, the fission-products activity distribution in the fuel column, the pressure, volume and composition of the fission gas, the burn-up, the isotopic composition and structural changes of the fuel enabled the characterization of the behaviour of the Romanian CANDU fuel in power ramping conditions performed in the TRIGA materials testing reactor.  相似文献   

9.
The potential for minimizing uranium consumption by using a reactor fleet with three different components and mixed thorium/uranium cycles has been investigated with a view to making nuclear power a more sustainable and cleaner means of generating energy. Mass flows of fissile material have been calculated from burnup simulations at the core-equivalent assembly level for each of the three components of the proposed reactor fleet: plutonium extracted from the spent fuel of a standard pressurized water reactor (first component) is converted to 233U in an advanced boiling water reactor (second component) to feed a deficit of multi-recycled 233U needed for the Th/233U fuel of the light/heavy water reactor (third component) which has a high breeding ratio. Although the proposed fleet cannot breed its own fuel, we show that it offers the possibility for substantial economy of uranium resources without the need to resort to innovative (and costly) reactor designs. A very high fleet breeding ratio is achieved by using only currently existing water-based reactor technology and we show that such three-component systems will become economically competitive if the uranium price becomes sufficiently high (>300 $/kg). Another major advantage of such systems is a corresponding substantial decrease in production of plutonium and minor actinide waste.  相似文献   

10.
To improve nuclear fuel utilization efficiency and prolong fuel cycle burn-up,a tight ptich lattice pressured heavy water reactor was investigated as an alternative of next generation of power reactors.It is shown that the high conversion ratio and negative coolant void reactivity coefficient are challenges in the reactor core physics designs.Various techniques were proposed to solve these problems.In this work.a tight pitch lattice and mixed fuel assemblies pressured heavy water reactor concept was investigated.BY utilizing numerical simulation technique,it is demonstrated that reactor core mixed with Pu/U and Th/U assemblies can achieve high conversion ratio(0.98) ,long burn-up(60GWD/t)and negative void reactivity coefficients.  相似文献   

11.
With world stockpiles of used nuclear fuel increasing, the need to address the long-term utilization of this resource is being studied. Many of the transuranic (TRU) actinides in nuclear spent fuel produce decay heat for long durations, resulting in significant nuclear waste management challenges. These actinides can be transmuted to shorter-lived isotopes to reduce the decay heat period or consumed as fuel in a CANDU(R) reactor.Many of the design features of the CANDU reactor make it uniquely adaptable to actinide transmutation. The small, simple fuel bundle simplifies the fabrication and handling of active fuels. Online refuelling allows precise management of core reactivity and separate insertion of the actinides and fuel bundles into the core. The high neutron economy of the CANDU reactor results in high TRU destruction to fissile-loading ratio.This paper provides a summary of actinide transmutation schemes that have been studied in CANDU reactors at AECL, including the works performed in the past ( [Boczar et al., 1996] , [Chan et al., 1997] , [Hyland and Dyck, 2007] and [Hyland et al., 2009] ). The schemes studied include homogeneous scenarios in which actinides are uniformly distributed in all fuel bundles in the reactor, as well as heterogeneous scenarios in which dedicated channels in the reactor are loaded with actinide targets and the rest of the reactor is loaded with fuel.The transmutation schemes that are presented reflect several different partitioning schemes. Separation of americium, often with curium, from the other actinides enables targeted destruction of americium, which is a main contributor to the decay heat 100–1000 years after discharge from the reactor. Another scheme is group-extracted transuranic elements, in which all of the transuranic elements, plutonium (Pu), neptunium (Np), americium (Am), and curium (Cm) are extracted together and then transmuted. This paper also addresses ways of utilizing the recycled uranium, another stream from the separation of spent nuclear fuel, in order to drive the transmutation of other actinides.  相似文献   

12.
The reprocessing actinide materials extracted from spent fuel for use in mixed oxide fuels is a key component in maximizing the spent fuel repository utility. While fast spectrum reactor technologies are being considered in order to close the fuel cycle, and transmute these actinides, there is potential to utilize existing pressurized heavy water reactors such as the CANDU®1 design to meet these goals. The use of current thermal reactors as an intermediary step which can burn actinide based fuels can significantly reduce the fast reactor infrastructure needed. This paper examines the features of actinide mixed oxide fuel, TRUMOX, in a typical CANDU nuclear reactor. The actinide concentrations used were based on extraction from 30 year cooled spent fuel and mixed with natural uranium in 4.75% actinide MOX fuel. The WIMS-AECL model of the fuel lattice was created and the two neutron group properties were transferred to RFSP in order to create a 3 dimensional time average full core model. The model was created with typical CANDU limits on bundle and channel powers and a burnup target of 45 MWd/kgHE. The TRUMOX fuel design achieved its goals and performed well under normal operations simulations. This effort demonstrated the feasibility of using the current fleet of CANDU reactors as an intermediary step in burning reprocessed spent fuel and reducing actinide burdens within the end repository. The recycling, reprocessing and reuse of spent fuels produces a much more sustainable and efficient nuclear fuel cycle using existing and proven reactor technologies.  相似文献   

13.
This paper presents fast reactor core concept and its feasibility as a part of newly proposed compound process fuel cycle in which spent fuels of light water reactor are multi-recycled without conventional reprocessing but with only pyrochemical processing, fuel re-fabrication and reloading to the fast reactor core. Results of the core survey analyses in order to find out the feasibility of this concept, taking example for BWR MOX spent fuel of 60 GWd/t burn-up, show that four times recycling of LWR spent fuel with the burn-up of more than 300 GWd/t can be achieved without increasing MA content. Such benefits will be expected in this concept as reduction of fuel cycle cost due to simplified reprocessing procedure, reduction of environmental impacts due to reduced high level waste, efficient utilization of nuclear fuel resources, enhancement of nuclear non-proliferation, and suppression of LWR spent fuel pile-up.  相似文献   

14.
The second Egyptian Research Reactor ET-RR-2 is a multipurpose research reactor. It is an open pool type, with nominal power of 22 MW water-cooled. The reactor pool is designed to accommodate two fuel test loops mainly 500 and 20 KW loop in the reactor reflector to enable performing experiments on the behavior of fuel rods for nuclear reactors under their operating conditions. For that, inserted high-pressure test loop (HPTL) loaded with suggested CANDU type fuel element in the reactor core is important to achieve the above reason. From the neutronic safety point of view, it is necessary to study the mutual neutronic and reactivity effect between the reactor core and HPTL. This paper aimed at the study of the temperature coefficients of fuel and moderator of the CANDU type fuel element at different 235U enrichments, and the effect of HPTL on the reactor core reactivity. The effect of flooding the contact second shut down system (SSS) chamber with water and gadolinium nitrate on the reactor core reactivity in the presence of HPTL. All analysis was performed with the WIMSD4 and DIXY2 codes. This study shows that, an unacceptable change of reactor core reactivity was found due to the presence of the HPTL and the maximum inserted reactivity does not exceed 527 pcm at high possible 235U enrichment (10%).  相似文献   

15.
《Annals of Nuclear Energy》2002,29(14):1721-1733
A transition from 37-element natural uranium fuel to CANFLEX-NU fuel has been modeled in a 1200-day time-dependent fuel management simulation for a CANDU 6 reactor. The simulation was divided into three parts. The pre-transition period extended from 0 to 300 FPD, in which the reactor was fuelled only with standard 37-element fuel bundles. In the transition period, refueling took place only with the CANFLEX-NU fuel bundle. The transition stage lasted from 300 to 920 FPD, at which point all of the 37-element fuel in the core had been replaced by CANFLEX-NU fuel bundle. In the post-transition phase, refueling continued with CANFLEX-NU fuel until 1200 FPD, to arrive at estimate of the equilibrium core characteristics with CANFLEX-NU fuel. Simulation results show that the CANFLEX-NU fuel bundle has a operational compatibility with the CANDU 6 reactor during the transition core, and also show that the transition core from 37-element natural uranium fuel to CANFLEX-NU can be operated without violating any license limit of the CANDU 6 reactor.  相似文献   

16.
Small long-life reactor is required for some local areas. CANDLE small long-life fast reactor which does not require control rods, mining, enrichment and reprocessing plants can satisfy this demand. In a CANDLE reactor, the shapes of neutron flux, nuclide number densities and power density distributions remain constant and only shift in axial direction.

The core with 1.0 m radius, 2.0 m length can realize CANDLE burn-up with nitride (enriched N-15) natural uranium as fresh fuel. Lead–Bismuth is used as coolant.

From steady state analysis, we obtained the burn-up velocity, output power distribution, core temperature distribution, etc. The burn-up velocity is less than 1.0 cm/year that enables a long-life design easily. The core averaged discharged fuel burn-up is about 40%.  相似文献   


17.
This paper describes the results of fuel burnup measurements, made over a period of several years on discharged fuel from nuclear power plant and research reactor. The measured and calculated burnup of different spent fuel types, viz.: Natural uranium CANDU fuel bundles; 10.5% enriched booster rods; 20% enriched MTR fuel elements have been presented. High-resolution gamma spectrometry, using 137Cs and 134Cs burnup monitors was employed in different reactors to estimate the amount of 235U depletion in the respective fuel. The experimental data was compared with those of calculations to optimize fuel-scheduling programme. The burnup data is useful for assessment of fuel performance in the core and resolving design issues related to long-term storage facilities. It has been observed that the gamma spectrometry is very effective in identifying exact position of individual booster bundles inside the discharged booster assemblies, which is useful in safeguard applications. It is concluded that the distribution of measured isotopic activity ratios of 134Cs/137Cs along the height of the spent fuel gives accurate estimate of the axial neutron flux profiles in the core. The activity ratio technique therefore provides a useful method to determine flux peaking factors at the particular locations of the fuel assemblies in the reactor.  相似文献   

18.
Th—^233U热中子增殖堆某些物理特性的探讨   总被引:1,自引:1,他引:0  
张家骅 《核技术》1991,14(12):705-711
  相似文献   

19.
CANDU堆先进燃料循环的展望   总被引:10,自引:6,他引:4  
谢仲生 Bocza.  P 《核动力工程》1999,20(6):560-565,575
介绍CANDU堆的天然铀燃料循环以及最近开发的适合未来近期的先进燃料循环。高中子经济性,不停堆换料以及简单的燃料束设计,使得CANDU堆具有非常优良的燃料循环灵活性和多样性。  相似文献   

20.
A CANDU reactor fueled with a mixed fuel made of thoria (ThO2) and nuclear waste actinides has been investigated. The mixed fuel composition has been varied in radial direction to achieve a uniform power distribution and fuel burn-up in the fuel bundle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号