首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several ways to produce microporous and mesoporous carbon monoliths by template assisted synthesis routes are described. Pressed zeolite (HY) and silica powder tablets have been used as templates. Sucrose acts as a carbon precursor and as a binder between the carbon particles as well. In the case of zeolite template, the carbon porosity could be increased by additional loading of the template with ethene. Due to the balance between mechanic stability and porosity of the carbon monolith, an optimal amount of sucrose is required. The final products were characterized by low temperature nitrogen adsorption.  相似文献   

2.
刘攀博  焦剑  黄英  邹亮 《材料导报》2012,26(2):44-48
三嵌段共聚物F127为模板剂,线性酚醛树脂为碳前驱体,采用溶剂挥发诱导有机-有机自组装法(EI-SA)制备了具有二维六方结构的有序介孔碳。利用FT-IR、XRD、TEM、N2吸附/脱附等方法对有序介孔碳的结构进行了表征,研究了不同焙烧温度和模板剂用量对有序介孔碳结构的影响。结果表明,当模板剂的用量一定时,有序介孔碳的孔径、孔容和孔壁厚度都随着焙烧温度的升高而降低,但比表面积却随着微孔含量的增加而增大。随着模板剂用量的增加,介孔碳的有序性降低。有序介孔碳PF-2-500的比表面积、孔径、孔容、孔壁厚度和微孔比表面积比分别为583.82m2/g、3.05nm、0.31cm3/g、3.40nm和361.18m2/g,而有序介孔碳PF-1-500的比表面积、孔径和孔容相对于PF-2-500有所提高,分别为647.79m2/g、3.44nm和0.41cm3/g,但微孔比表面积和孔壁厚度分别降低为309.46m2/g和3.35nm。  相似文献   

3.
A novel zeolite material denoted as ITQ-2-like was synthesized by treating MCM-22 precursor with H2O2 and characterized by various physicochemical techniques (X-ray powder diffraction, transmission electron microscopy, thermogravimetric-differential thermal analyses, Fourier transform infrared spectroscopy and nitrogen adsorption-desorption). It was found that not only the organic template could be completely removed but also the morphology and topology structure of MCM-22 precursor was well preserved after H2O2 treatment. Novel zeolite material ITQ-2-like presented relatively ordered cascaded layers in a face-to-face orientation along the c-axis and exhibited different physicochemical properties in comparison with ITQ-2 and MCM-22 prepared from the same precursor. Moreover, the catalytic behaviour and pore roles of three kinds of Mo-containing catalysts of ITQ-2-like, MCM-22 and ITQ-2 were investigated in the reaction of methane aromatization.  相似文献   

4.
两步晶化法制备介孔材料及其催化性能研究   总被引:1,自引:0,他引:1  
采用两步晶化法,由MCM-22沸石前驱体合成了一种介孔材料.通过XRD、N2吸附-脱附、TEM、27A lMAS NMR以及吡啶吸附红外光谱等技术对样品进行了表征.结果显示所合成的样品不是微孔沸石与介孔材料的混合物,而是含强酸性中心、水热稳定性良好的新型介孔分子筛.利用异丙苯的裂解反应、苯和1-十二烯烃的烷基化反应,评价了其对大分子的酸催化活性,并与常规介孔材料MCM-41进行了比较.在350℃时,所合成的介孔材料和常规介孔材料MCM-41对异丙苯的裂解转化率分别为68.98%和48.80%.在210℃苯和1-十二烯烃的烷基化反应时,所合成的介孔材料和MCM-41对1-十二烯烃的转化率分别约为95.20%和86.89%,产物直链烷基苯的选择性分别约为88.11%和90.06%.结果表明所合成的介孔材料对大分子的酸催化性能优越于常规介孔材料MCM-41.  相似文献   

5.
以不同氢氧化物做碱源合成B-EU-1/ZSM-5复合分子筛, 并比较各平衡阳离子的结构导向作用及其形貌特征, 发现钠离子的导向作用最强, 且合成复合分子筛的表面较光滑、无明显晶面界限。对合成样品进行了TG-DTG、N2吸附-脱附和NH3-TPD分析。结果表明: 双模板剂一步法合成的复合分子筛模板剂脱除的失重率为5.67%, 小于机械复合分子筛的失重率7.31%, 复合分子筛的比表面积、孔容和微孔平均孔径均有所增大, 同时其酸强度、酸量都增大, 有利于二甲苯优先从复合分子筛的孔道结构中扩散出来。将分子筛应用于甲醇转化制二甲苯催化反应, 结果显示, 双模板剂一步法合成的复合分子筛催化产物油相中芳烃的选择性最高达到66.72%, 芳烃中二甲苯的含量为46.15%, 二甲苯中对二甲苯的含量达到30.75%。这是由于B-EU-1/ZSM-5催化剂的特殊孔道结构具备择形效应, 使得分子动力学直径较小的二甲苯分子优先从其孔道中扩散出来。  相似文献   

6.
以表面活性剂十六烷基三甲基溴化铵(CTAB)作为模板剂, 在不添加晶种和有机共溶剂的情况下采用简单的一步水热合成法制备了含有2~4 nm介孔的多级孔纳米丝光沸石。 通过改变 CTAB引入量可以调节所得多级孔丝光沸石样品的外比表面积以及介孔孔容, 最大外比表面积和介孔孔容可分别达到191 m2/g和0.17 cm3/g。均三甲苯在丝光沸石样品上的吸附行为表明, 微孔丝光沸石仅能吸附少量的吸附质, 而多级孔丝光沸石吸附量较大, 并呈现出IV型等温线的特征, 展示出多级孔丝光沸石中介孔的特征。以均三甲苯与苄基氯的苄基化反应来考察多级孔丝光的催化性能。相比于传统微孔丝光沸石, 苄基化反应在多级孔丝光沸石的转化率提高了近7倍, 反应的表观速率常数提高了近19倍。这是由于多级孔丝光沸石较高的外表面积和介孔孔容可以有效地改善大分子反应物的可接近性和产物的传质速率, 从而提高了大分子催化反应的效率。  相似文献   

7.
Self-bonded bodies of zeolite MCM-22 were prepared by vapor-phase transport method. The resultant materials were characterized by means of X-ray diffraction, scanning electron microscope, mercury porosimetry, and nitrogen porosimetry. Self-bonded MCM-22 bodies were in situ prepared at pH 10.0 with the molar composition of 0.05Na2O:SiO2:0.033Al2O3. It was found that the bodies, prepared by aluminosilicate gel, had been transformed into zeolite MCM-22. The MCM-22 bodies of which the mechanical resistance was 126 N/cm avoided binder accession. By adding auxiliary chemical–PEG20000 to the aluminosilicate gel, the pore size distributions of MCM-22 bodies could be adjusted. The average pore radius of MCM-22 bodies reached in the 149.41–653.64 nm range when AC/SiO2 ratio was 1.5 × 10−4–9.0 × 10−4.  相似文献   

8.
Hard template-based fabrication of mesoporous carbon unavoidably goes through the removal process of the template to generate template-free carbon replica, including troublesome disposal of template waste often accompanied by toxic etchant, which not only increases the fabrication cost of materials but also raises serious environmental concerns. As a novel strategy to overcome such problem, a direct in situ synthesis approach using silica waste in carbon/silica nanocomposite as a silica source and cetyltrimethylammonium bromide as a porogen under basic condition is reported in this study for the generation of a new composite composed of mesoporous MCM-41 silica and hollow carbon capsule. The resultant MCM-41/carbon capsule composite offers a 3-D interconnected multimodal pore system, which discloses a wide pore range of ordered uniform mesopores (ca 2.3?nm) resulting from MCM-41 silica and disordered uniform mesopores (ca 3.8?nm) and macropores (ca 300?nm) from hollow mesoporous carbon, respectively. The composite has a high specific surface area (ca 909?m2/g) and large pore volume (ca 0.73?cm3/g). The in situ transformation approach of silica waste into valuable mesoporous silica is considered as a promising scalable route for efficient new multi-functional composites useful for a wide range of applications such as adsorption of volatile organic compounds and radioactive wastes produced in a nuclear facility.  相似文献   

9.
Zhang HX  Cao AM  Hu JS  Wan LJ  Lee ST 《Analytical chemistry》2006,78(6):1967-1971
An electrochemical sensor for ultratrace nitroaromatic compounds (NACs) using mesoporous SiO2 of MCM-41 as sensitive materials is reported. MCM-41 was synthesized and characterized by scanning electron microscope, transmission electron microscopy, and small-angle X-ray diffraction. Glassy carbon electrodes modified with MCM-41 show high sensitivity for cathodic voltammetric detection of NACs (including 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), 2,4-dinitrotoluene, and 1,3-dinitrobenzene) down to the nanomolar level. The high sensitivity is attributed to the strong adsorption of NACs by MCM-41 and large surface area of the working electrode resulting from MCM-41 modification. The voltammetric response is fast, and the detection of NACs can be finished within 14 s. SiO2 nanospheres were similarly used to modify glassy carbon electrodes for electrochemical detection of TNT and TNB. The detection limit of SiO2 nanosphere-modified electrodes is lower than that of MCM-41-modified electrodes, possibly due to the smaller surface area of SiO2 nanospheres than mesoporous MCM-41. The results show mesoporous SiO2-modified glassy carbon electrodes, particularly MCM-41-modified electrodes, open new opportunities for fast, simple, and sensitive field analysis of NACs.  相似文献   

10.
沸石矿为模板制备多孔炭的研究   总被引:7,自引:7,他引:7  
以几种沸石矿为模板、蔗糖为碳源,通过模板法制备了多孔炭,并用77K氮气吸附和X射线衍射仪(XRD)进行了表征。结果表明:此方法可以制备出具有一定比表面积和较大中孔容积的多孔炭.其中孔率随着模板中孔容积的增大而增加,但在所制多孔炭中存有少量的杂质。  相似文献   

11.
In this review, the progress made in the last ten years concerning the synthesis of porous carbon materials is summarized. Porous carbon materials with various pore sizes and pore structures have been synthesized using several different routes. Microporous activated carbons have been synthesized through the activation process. Ordered microporous carbon materials have been synthesized using zeolites as templates. Mesoporous carbons with a disordered pore structure have been synthesized using various methods, including catalytic activation using metal species, carbonization of polymer/polymer blends, carbonization of organic aerogels, and template synthesis using silica nanoparticles. Ordered mesoporous carbons with various pore structures have been synthesized using mesoporous silica materials such as MCM‐48, HMS, SBA‐15, MCF, and MSU‐X as templates. Ordered mesoporous carbons with graphitic pore walls have been synthesized using soft‐carbon sources that can be converted to highly ordered graphite at high temperature. Hierarchically ordered mesoporous carbon materials have been synthesized using various designed silica templates. Some of these mesoporous carbon materials have successfully been used as adsorbents for bulky pollutants, as electrodes for supercapacitors and fuel cells, and as hosts for enzyme immobilization. Ordered macroporous carbon materials have been synthesized using colloidal crystals as templates. One‐dimensional carbon nanostructured materials have been fabricated using anodic aluminum oxide (AAO) as a template.  相似文献   

12.
Ordered microporous carbons were synthesized by the nanocasting process using EMC-2 zeolite (EMT structure type) and acetylene as a mould and a carbon precursor, respectively. In this study, the conditions of the synthesis methods for preparing the ordered microporous carbons were examined. Temperature and duration parameters for the chemical vapour infiltration were optimized to yield an ordered carbon replica that displays up the three XRD diffraction peaks. This faithful replica exhibits also a high micropore volume (1.3–1.4 cm3/g) with mainly supermicroporosity, a high specific surface area (>2900 m2/g) and nearly no mesoporosity. The pore size distribution calculated with NLDFT method from nitrogen physisorption data shows three maxima at 0.6, 1.0 and 1.8 nm diameters. The second is due to the zeolite wall dissolution. The first and the third are attributed to different types of default. Compared to the classical two-step procedure, the direct infiltration with acetylene appears an interesting route for the preparation of ordered microporous carbon replicas with high micropore volume.  相似文献   

13.
The performance of various dehumidification materials was assessed in terms of effective adsorption amount of water vapor based on the adsorption isotherms to find a suitable dehumidification element for an economical adsorptive desiccant cooling system being developed. The effective adsorption amount is an important factor for regeneration at lower temperatures. Three types of silica gels, S(a), S(b), and S(c), with different pore volumes and pore size distributions, and zeolite with various molar ratios of Si/Al, 5.6, 29, 47, 91, and 220, prepared from a Y-type zeolite treated with hydrochloric acid, an activated carbon with silica gel added to improve the hydrophobic surface, and MCM-41 were examined. Silica gels having effective adsorption amounts of 0.25 g/g, and activated carbon with silica gel added were assessed to be candidate desiccant materials.  相似文献   

14.
《Zeolites》1989,9(5):405-411
Zeolites have been synthesized from the Alix materials obtained by acid leaching of chrysotile asbestos having a magnesium leaching degree (MLD) larger than 60%. Above removal of 60% of Mg, acid-leaching results in a rapid morphological degradation of the asbestos fibers leading to a more porous and noncrystalline solid, comparable, when the MLD approaches 100%, to the highly siliceous zeolites or silicalite in terms of surface area, density, and hydrophobicity. Such microporous silica materials constitute excellent matrices for the growth of submicron zeolite particles. The rate of water uptake of the resulting zeolite A is much faster than that of commercial zeolite A, which can be used in applications for soil conditioning. The presence of Mg in the zeolites results in improved catalytic conversion of methanol to light olefins.  相似文献   

15.
Using tetraethylorthosilicate (TEOS) as the silica source, zeolite MCM-22 was hydrothermally synthesized with the acid-catalyzed hydrolysis of TEOS to produce siliceous precursors, followed by the addition of the alumina source and the structure-directing agent (hexamethyleneimine (HMI)), and the crystallization in a basic media. The acid used for catalyzing the hydrolysis of TEOS and the HMI/SiO2 ratio were changed to investigate their effects on the crystallization of MCM-22. The resultant materials were characterized by XRD, SEM, N2 adsorption and ICP techniques. It is found that the well crystallized MCM-22 can be successfully synthesized through the acid-catalyzed hydrolysis of TEOS, and hydrochloric acid is most effective in the hydrolysis of TEOS for synthesizing MCM-22 with a very short crystallization time of only 30 h. Moreover, with this synthesis route, it is also possible to obtain MCM-22 at a very low concentration of HMI with the HMI/SiO2 molar ratio of 0.1.  相似文献   

16.
多孔碳材料在催化、吸附、能源领域具有广泛的应用价值,它具有比表面积大、导电和导热性高、化学稳定好、价格便宜等特点,受到了人们的广泛关注.综述了氧化硅模板法制备多孔碳材料的研究进展,并简要地阐述了各种氧化硅为模板制备多孔碳材料的制备过程和优缺点.最后总结和展望了目前的研究现状和今后的发展.  相似文献   

17.
Hierarchical MCM-41/MFI composites were synthesized through ion-exchange of as-made MCM-41 type mesoporous materials with tetrapropylammonium bromide and subsequent steam-assisted recrystallization. The obtained samples were characterized by powder X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis, FT-IR, 1H–13C CP/MAS and nitrogen adsorption–desorption. The XRD patterns show that the MCM-41/MFI composite possesses both ordered MCM-41 phase and zeolite MFI phase. SEM and TEM images indicate that the recrystallized materials retained the mesoporous characteristics and the morphology of as-made mesoporous materials without the formation of bulky zeolite, quite different from the mechanical mixture of MCM-41 and MFI structured zeolite. Among others, lower recrystallization temperature and the introduction of the titanium to the parent materials are beneficial to preserve the mesoporous structure during the recrystallization process.  相似文献   

18.
采用NaY沸石分子筛作模板,乙酰丙酮为炭前驱体,使用液相浸渍-气相沉积工艺合成了富含微孔和中孔结构的多孔炭材料并对其进行了表征.所合成的多孔炭比表面积1351m2/g,孔容0.892cm3/g,微孔率0.63,孔径分布多在0.8nm~3.0nm之间.  相似文献   

19.
MCM-41 and Al–MCM-41 has been synthesized using cetyl-trimethylammonium bromide (CTAB) surfactant as template and adding the silica precursor to aqueous solutions containing CTAB. The obtained solids were calcined at 600 °C for 4 h. HPW heteropolyacid supported on the mesoporous were prepared using the incipient wetness method. The characterization of materials was performed by X-ray diffraction, Transmission Electron Microscopy, N2 adsorption, 29Si Cross Polarization–Magic Angle Spinning and 27Al MAS NMR. Results showed that the hexagonal structure is obtained in both cases. The Aluminium species are located inside an extra-framework. The impregnation reduces the surface area of the mesoporous materials especially of the Al–MCM-41 suggesting a participation of aluminium during the impregnation. HPW is well dispersed in the mesoporous materials and is located inside the pores interacting with the silanol group of the pores wall. 27Al MAS NMR measurements have showed that the impregnation causes the removal of the non-framework aluminium.  相似文献   

20.
Particle size, textural and surface characteristics influence some major technological properties of high siliceous aluminosilicate zeolite and sillicoaluminophosphate (SAPO) microporous materials. A comparative study was furnished for measuring surface characteristics, particle size and particle size distribution using particle size analyzer (PSA) and scanning electron microscope (SEM). The PSA is capable of measuring particle diameter in micron range. The results of these techniques for estimation of particle size were compared and correlated statistically. Student t-test and variance ratio test (F-test) methods were performed for the significance of results by the analysis of variance (ANONA) and multiple-range tests. Textural and surface characteristics were evaluated by Brunauer, Emmett & Teller (BET) volumetric technique and v-as plotting method. The textural results shows that the external surface area and micropore volume of microporous materials were higher than those of the high siliceous zeolites and its zeotype materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号