首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
2-Hydroxyisonicotinate dehydrogenase isolated from Mycobacterium sp. INA1   总被引:1,自引:0,他引:1  
The objective of this study was to identify factors associated with poor mobilization of peripheral blood progenitor cells (PBPCs) or delayed platelet engraftment after high-dose therapy and autologous stem cell transplantation in patients with lymphoma. Fifty-eight patients with Hodgkin's disease or non-Hodgkin's lymphoma underwent PBPC transplantation as the "best available therapy" at Memorial Sloan-Kettering Cancer Center (New York, NY) between 1993 and 1995. PBPCs were mobilized with either granulocyte colony-stimulating factor (G-CSF) alone (n = 19) or G-CSF following combination chemotherapy (n = 39). Forty-eight of these patients underwent a PBPC transplant, receiving a conditioning regimen containing cyclophosphamide, etoposide, and either total body irradiation, total lymphoid irradiation, or carmustine. A median number of 4.6 x 10(6) CD34+ cells/kg were obtained with a median of three leukapheresis procedures. Mobilization of PBPCs using chemotherapy plus G-CSF was superior to G-CSF alone (6.7 x 10(6) versus 1.5 x 10(6) CD34+ cells/kg; P = 0.0002). Poorer mobilization of progenitor cells was observed in patients who had previously received stem cell-toxic chemotherapy, including (a) nitrogen mustard, procarbazine, melphalan, carmustine or > 7.5 g of cytarabine chemotherapy premobilization (2.0 x 10(6) versus 6.0 x 10(6) CD34+ cells/kg; P = 0.005), or (b) > or = 11 cycles of any previous chemotherapy (2.6 x 10(6) versus 6.7 x 10(6) CD34+ cells/kg; P = 0.02). Platelet recovery to > 20,000/microliter was delayed in patients who received < 2.0 x 10(6) CD34+ cells (median, 13 versus 22 days; P = 0.06). Patients who received > or = 11 cycles of chemotherapy prior to PBPC mobilization tended to have delayed platelet recovery to > 20,000/microliter and to require more platelet transfusions than less extensively pretreated patients (median, 13.5 versus 23.5 days; P = 0.15; median number of platelet transfusion episodes, 13 versus 9; P = 0.17). These data suggest that current strategies to mobilize PBPCs may be suboptimal in patients who have received either stem cell-toxic chemotherapy or > or = 11 cycles of chemotherapy prior to PBPC mobilization. Alternative approaches, such as ex vivo expansion or the use of other growth factors in addition to G-CSF, may improve mobilization of progenitor cells for PBPC transplantation.  相似文献   

2.
The efficacy of recombinant human thrombopoietin (TPO) and recombinant human granulocyte colony stimulating factor (G-CSF) in stimulating platelet and neutrophil recovery was evaluated in a placebo-controlled study involving transplantation of limited numbers (1-3 x 10(4)/kg) of highly purified autologous stem cells (CD34++/RhLA-DR[dull]) into rhesus monkeys after the animals were subjected to 8 Gy of total body irradiation (TBI) (x-rays). The grafts shortened profound TBI-induced pancytopenia from 5 to 6 weeks to 3 weeks. Daily subcutaneous (sc) injection of TPO (10 microg/kg/day, days 1-21 after TBI) did not stimulate platelet regeneration after transplantation either alone or in combination with G-CSF (5 microg/kg/day sc, days 1-21 after TBI). G-CSF treatment failed to prevent neutropenia in the monkeys and did not stimulate recovery to normal neutrophil levels. Simultaneous administration of TPO and G-CSF did not influence the observed recovery patterns. To test the hypothesis that the limited number of cells transplanted or the subset chosen was responsible for the lack of effectiveness of TPO, three additional monkeys were transplanted with 10(7)/kg unfractionated autologous bone marrow cells. Two of these animals received TPO and the other served as a control. In this setting, as well, TPO treatment did not prevent thrombocytopenia. This study demonstrates that treatment with TPO does not accelerate platelet reconstitution from transplanted stem cells after high-dose TBI. These findings contrast with the rapid TPO-stimulated platelet recovery in myelosuppression induced by 5 Gy of TBI in rhesus monkeys; we conclude from this that the clinical effectiveness of the TPO response depends on the availability of TPO target cells in the first week after TBI, that is, before endogenous TPO levels reach the saturation point. In addition, protracted isolated thrombocytopenia was observed in two G-CSF-treated monkeys, one of which also received TPO. Furthermore, TPO treatment for 7 days in the 6th week after TBI during severe thrombocytopenia in one monkey produced prompt clinical improvement and an increase in platelet counts.  相似文献   

3.
The aim of this study was to analyze factors affecting mobilization and engraftment in 40 children undergoing autologous peripheral blood progenitor cell transplantation for different malignancies: 19 patients with haematological malignancies and 21 patients with solid tumors. Patients received 4-5 days of rhG-CSF (12 micrograms/kg/day) subcutaneously. Apheresis was performed by continuous flow blood cell separation beginning on the fifth day of rhG-CSF. For patients weighing < or = 25 kg, the extracorporeal line was primed with irradiated red blood cells. After myeloablative conditioning regimens, patients were grafted with 7.21 +/- 7.8 x 10(6)/kg CD34+ cells. Days to achieve an absolute neutrophil count > 0.5 x 10(9)/1 and a platelet count > 20 x 10(9)/1 without platelet support were 9.50 +/- 1.2 (range 7-13) and 18.1 +/- 8.3 (range 9-37), respectively. The number of CD34+ cells infused was highly correlated with engraftment kinetics (P = 0.0001). The patient's body weight and the number of previous chemotherapy courses had a negative influence on CD34+ cells collected.  相似文献   

4.
The CD34 antigen is expressed by human hematopoietic progenitor and stem cells. These cells are capable of reconstituting marrow function after marrow-ablative chemo-radiotherapy. Several different technologies have been developed for the separation of CD34+ cells from bone marrow or peripheral blood stem cell (PBSC) components. We used an immunomagnetic separation technique to enrich CD34+ cells from PBSC components in anticipation of autologous transplantation for patients with B lymphoid malignancies. Twenty-nine patients enrolled on this study and received mobilization chemotherapy followed by G-CSF. Of these, 21 achieved a peripheral blood CD34+ cell level of at least 2.0 x 10(4)/l required by protocol for separation of the stem cell components. A median of three components per patient was collected for processing. The average CD34+ cell concentration in the components after apheresis was 1.0 +/- 1.2%. After the CD34+ cell selection, the enriched components contained 0.6 +/- 0.6% of the starting nucleated cells. The recovery of CD34+ cells, however, averaged 58.4 +/- 19.2% of the starting cell number, with a purity of 90.8 +/- 6.5%. Overall depletion of CD34- cells was 99.96 +/- 0.06%. Nineteen patients were treated with marrow-ablative conditioning regimens and received an average of 6.2 +/- 2.0 x 10(6) CD34+ cells/kg body weight. These patients recovered to an ANC >0.5 x 10(9)/l at a median of 11 days (range 8-14), and platelet transfusion independence at a median of 9 days (range 5-13). Four patients died of transplant-related complications or relapse before 100 days after transplantation. No patient required infusion of unseparated cells because of failure of sustained bone marrow function. These data demonstrate that peripheral blood-derived CD34+ cells enriched by use of an immunomagnetic separation technique are capable of rapid engraftment after autologous transplantation.  相似文献   

5.
The transplantation of mobilized progenitor cells after high-dose chemotherapy shortens haemopoietic engraftment. CD34 cell subsets were examined in 20 consecutive mobilized progenitor cell collections obtained from patients with solid tumours that had not been previously treated. The analysis of CD34 cells was based on the expression of intracellular antigens, surface antigens including CD38, and cell size using multi-dimensional flow cytometry. We also correlated the numbers of stem cell subsets reinfused to haemopoietic recovery. The majority of CD34+ cells expressed CD13 and CD33. A significant proportion was cytoplasmic myeloperoxidase (cMPO) positive. CD34+ MPO+ cells increased significantly in late collections. MPO expression was related to cell size. Cells expressing CD13 also increased in late collections in parallel to CFU-GM count. Small subpopulations of CD34+ CD38+ were committed to B cells, T cells and erythroid cell lineages. A small population expressing the megakaryocytic antigen had a small size and were predominantly CD38-. A minor subpopulation expressed stem cells antigens. These were significantly higher in late collections (CD34+ Thy-1+ and CD34+ CD33-). After mobilization, patients received three cycles of intensive chemotherapy followed by reinfusion of mobilized progenitors (5.45 x 10(6)/kg CD34+ cells, range 3.4-11.88). The numbers of reinfused CD34 cells or the individual subsets did not influence recovery of leucocytes (9 d) or platelets (9 d). In conclusion, the numbers of stem cells and their subsets differed between collections and, in unpretreated patients receiving intensive chemotherapy, there was no delayed engraftment when sufficient numbers of stem cells were reinfused. The recovery period was short and not correlated to any stem cell subsets.  相似文献   

6.
BACKGROUND AND OBJECTIVE: Concerns about the risk of transfusion therapy are driving towards new strategies which are designed to minimize exposure to allogeneic blood products. We aimed to find out whether it is possible to support the phase of thrombocytopenia following high-dose chemotherapy (HDC) and circulating progenitor cells (CPC) transplantation by autologous platelet concentrates (PC). DESIGN AND METHODS: PC were collected from 32 patients undergoing HDC and CPC transplantation for stage II/III breast cancer. A single plateletpheresis was performed at rebound after high-dose cyclophosphamide, when platelet count exceeded 250 x 10(9)/L. PC were cryopreserved in 5% DMSO after controlled-rate freezing and stored in liquid nitrogen. In vitro studies of cryopreserved platelets (aggregation, ATP release and change of mean platelet volume induced by EDTA) were performed. When platelet counts dropped below 20 x 10(9)/L following HDC (thiotepa 600 mg/m2, L-PAM 160 mg/m2) and CPC transplant (CD34+ cells > 5 x 10(6)/kg), PC were thawed in a 37 degrees C water bath, centrifuged to remove DMSO, resuspended in autologous plasma and reinfused within one hour. RESULTS: Large quantities of platelets were harvested in all patients (median 6.6 x 10(11), range 4.8-12.2). In vitro studies showed preserved platelet function as compared to both fresh platelets and standard PC. Twenty-eight out of 32 patients received autologous PC. At the time of transfusion most of the patients were febrile (> 38 degrees C) and had mucositis > G2. The median number of platelets reinfused was 3.8 x 10(11) (range 2.0-8.1) with a median loss during the freeze-thaw-wash procedure of 37%. Autotransfusion was able to maintain platelet count above 20 x 10(9)/L in most patients, with a corrected count increment > 7.5 in 20 cases. Four patients required one additional allogeneic transfusion, two because of a poor increment and two due to a late-occurring epistaxis. No side effects related to PC infusion were recorded. Sixteen control patients who received the same HDC and a similar number of CD34+ cells required a total of 17 allogeneic PC units (1 patient did not require platelet transfusion). INTERPRETATION AND CONCLUSIONS: Our data demonstrate that large doses of autologous platelets can easily be collected and safely administered to support the period of thrombocytopenia in patients undergoing HDC and CPC transplantation. Autologous PC in these patients can abrogate the risks deriving from allogeneic platelet transfusion.  相似文献   

7.
PURPOSE: To evaluate the reliability of CD34/CD33 subset enumeration as a predictor of hematopoietic repopulating potential in autologous blood stem-cell transplantation and to determine which patient and treatment-related factors affect the timing, quantity, and type of blood stem cells mobilized. PATIENTS AND METHODS: We analyzed blood stem-cell collections from 410 consecutive cancer patients who received mobilization therapy and evaluated factors, including CD34+ subset quantities, that might influence engraftment kinetics and transfusion requirements in autologous blood stem-cell recipients. RESULTS: The majority of patients (97%) mobilized CD34+33- cells, which were usually collected in the greatest quantity on the first day of apheresis. Patients who received only growth factor mobilized the highest percentage of CD34+33- cells. Extensive prior chemotherapy limited the collection of CD34+33- cells. In addition to patient diagnosis (P < .006) and total CD34+ cell dose (P = .0001), CD34+33- cell dose (P < .005) and percentage of CD34+33- cells (P < .005) were identified as independent factors significantly predictive of engraftment kinetics. CD34+33- cell dose (R2 < or = .177; P < .0001) was a strong and the only significant predictor of RBC and platelet transfusion requirements. Furthermore, independent of the total CD34+ cell dose, as the CD34+33- cell dose increased, days to neutrophil recovery, days to platelet recovery, and transfusion requirements decreased. CONCLUSION: These findings show that CD34+33- cells are readily collected in most cancer patients and significantly influence engraftment kinetics and transfusion requirements in autologous blood stem-cell recipients. CD34+33- cell quantity of the blood stem-cell graft appears to be a more reliable predictor of hematopoietic recovery rates than total CD34+ cell quantity in this setting.  相似文献   

8.
Engraftment kinetics after high-dose chemotherapy (HDC) were evaluated in patients receiving autologous peripheral blood stem cell (PBSC) infusions with a low CD34+ cell content. Forty-eight patients were infused with < 2.5 x 10(6) CD34+ cells/kg; 36 because of poor harvests and 12 because they electively received only a fraction of their harvested cells. A median of 2.12 x 10(6) CD34+ cells/kg (range, 1.17-2.48) were infused following one of seven different HDC regimens. All patients achieved absolute neutrophil counts > or = 0.5 x 10(9)/l at a median of day 11 (range, 9-16). Forty-seven patients achieved platelet counts > or = 20 x 10(9)/l at a median of day 14 (range, 8-250). Nine of 47 (19%) had platelet recovery after day 21, 4/47 (9%) after day 100 and one died on day 240 without platelet recovery. Twenty-six patients (54%) died of progressive disease in 51-762 days; 22 (46%) are alive at a median of 450 days (range, 94-1844), 17 (35%) of whom are surviving disease-free at a median of 494 days (range, 55-1263). No patient died as a direct consequence of low blood cell counts. These data demonstrate that PBSC products containing 1.17-2.48 x 10(6) CD34+ cells/kg resulted in relatively prompt neutrophil recovery in all patients but approximately 10% had delayed platelet recovery.  相似文献   

9.
The serum levels of thrombopoietin (TPO) were measured in 16 patients with thrombotic thrombocytopenic purpura (TTP), 12 with hemolytic uremic syndrome (HUS), 10 with aplastic anemia (AA), 10 with disseminated intravascular coagulation (DIC), and 71 with idiopathic thrombocytopenic purpura (ITP). The serum TPO levels were measured with a sensitive sandwich enzyme-linked immunosorbent assay. The serum TPO level in the ITP group (1.68 +/- 0.85 fmol/ml) were not significantly increased compared with those of the normal subjects. The TPO levels in the TTP (2.77 +/- 1.38 fmol/ml) and HUS groups (5.77 +/- 4.41 fmol/ml) were higher than those of the normal subjects. The patients with AA (12.7 +/- 8.0 fmol/ml) and those with DIC (13.3 +/- 5.7 mol/ml) had significantly higher serum TPO levels than did the normal subjects and ITP patients. The TPO levels were well correlated with the platelet counts in the TTP patients, and were negatively correlated with the platelet counts in the ITP patients. These results suggest that the serum TPO levels in some thrombocytopenic diseases are regulated not only by the platelet count and the megakaryocyte mass, but also by other factors.  相似文献   

10.
Data on endogenous thrombopoietin (TPO) levels and their regulation in myelodysplastic syndromes (MDS) are sparse. We examined the plasma TPO level of 85 MDS patients by a sensitive enzyme immunoassay and the platelet expression of TPO receptor (TPO-R) protein, which metabolizes endogenous TPO, in 19 MDS patients with an equilibrium binding assay using 125I-TPO. The MDS patients had higher plasma TPO levels (7.0 +/- 9.3 fmol/ml) than 52 normal subjects (P < 0.0001). Refractory anaemia (RA) patients (n = 39) had higher plasma TPO levels than patients (n = 28) with RA with excess blasts (RAEB) or RAEB in transformation (RAEB-t) (P = 0.0002), irrespective of similar platelet counts in these groups. The plasma TPO level correlated inversely with the platelet count in RA patients (P = 0.0027) but not in RAEB and RAEB-t patients (P = 0.7865). These data suggest that the physiological pathway for TPO production and metabolism is conserved, at least partially, in RA, but deranged in RAEB/RAEB-t. The number of TPO-R per platelet was significantly smaller in 19 MDS patients (17.5 +/- 13.3) than in normals (P = 0.0014), but similar between RA patients and patients with RAEB and RAEB-t. Further, the bone marrow megakaryocyte count, determined in 31 MDS patients, was quite similar between RA patients and patients with RAEB or RAEB-t. Thus, in addition to thrombocytopenia, a reduced platelet TPO-R number may contribute to elevated plasma TPO levels in MDS, and a regulatory pathway for circulating TPO other than platelet TPO-R and marrow megakaryocytes, such as blasts expressing TPO-R, may operate in RAEB/RAEB-t.  相似文献   

11.
Thrombocytopenia has been characterized in six patients infected with human immunodeficiency virus (HIV) with respect to the delivery of viable platelets into the peripheral circulation (peripheral platelet mass turnover), marrow megakaryocyte mass (product of megakaryocyte number and volume), megakaryocyte progenitor cells, circulating levels of endogenous thrombopoietin (TPO) and platelet TPO receptor number, and serum antiplatelet glycoprotein (GP) IIIa49-66 antibody (GPIIIa49-66Ab), an antibody associated with thrombocytopenia in HIV-infected patients. Peripheral platelet counts in these patients averaged 46 +/- 43 x 10(3)/microL (P = . 0001 compared to normal controls of 250 +/- 40x 10(3)/microL), and the mean platelet volume (MPV) was 10.5 +/- 2.0 fL (P > 0.3 compared with normal control of 9.5 +/- 1.7 fL). The mean life span of autologous 111In-platelets was 87 +/- 39 hours (P = .0001 compared with 232 +/- 38 hours in 20 normal controls), and immediate mean recovery of 111In-platelets injected into the systemic circulation was 33% +/- 16% (P = .0001 compared with 65% +/- 5% in 20 normal controls). The resultant mean peripheral platelet mass turnover was 3.8 +/- 1.5 x 10(5) fL/microL/d versus 3.8 +/- 0.4 x 10(5) fL/microL/d in 20 normal controls (P > .5). The mean endogenous TPO level was 596 +/- 471 pg/mL (P = .0001 compared with 95 +/- 6 pg/mL in 98 normal control subjects), and mean platelet TPO receptor number was 461 +/- 259 receptors/platelet (P = .05 compared with 207 +/- 99 receptors/platelet in nine normal controls). Antiplatelet GPIIIa49-66Ab levels in sera were uniformly increased in HIV thrombocytopenic patients (P < .001). In this cohort of thrombocytopenic HIV patients, marrow megakaryocyte number was increased to 30 +/- 15 x 10(6)/kg (P = .02 compared with 11 +/- 2.1 x 10(6)/kg in 20 normal controls), and marrow megakaryocyte volume was 32 +/- 0.9 x 10(3) fL (P = .05 compared with 28 +/- 4.5 x 10(3) fL in normal controls). Marrow megakaryocyte mass was expanded to 93 +/- 47 x 10(10) fL/kg (P = .007 compared with normal control of 31 +/- 5.3 x 10(10) fL/kg). Marrow megakaryocyte progenitor cells averaged 3.3 (range, 0.4 to 7.3) CFU-Meg/1,000 CD34(+) cells compared with 27 (range, 0.1 to 84) CFU-Meg/1,000 CD34(+) cells in seven normal subjects (P = .02). Thus, thrombocytopenia in these HIV patients was caused by a combination of shortening of platelet life span by two thirds and doubling of splenic platelet sequestration, coupled with ineffective delivery of viable platelets to the peripheral blood, despite a threefold TPO-driven expansion in marrow megakaryocyte mass. We postulate that this disparity between circulating platelet product and marrow platelet substrate results from direct impairment in platelet formation by HIV-infected marrow megakaryocytes.  相似文献   

12.
Endogenous serum thrombopoietin (TPO) levels were measured in 31 patients with aplastic anaemia (AA) using an enzyme immunoassay with a sensitivity of 20 pg/ ml. The median platelet count for all AA patients was 30 +/- 29 x 10(9)/l (range 5-102) compared with a median of 284 +/- 59 x 10(9)/l (range 148-538) for normal controls. Serum TPO levels were significantly elevated in all patients compared with normals (1706 +/- 1114.2, range 375-5000 v 78 +/- 54, range 16.5-312.9, P < 0.0001). There was no correlation between serum TPO levels and the degree of thrombocytopenia in AA patients, but TPO levels were significantly higher in patients who were platelet transfusion dependent than in patients who were transfusion independent (P < 0.01). There was a trend for higher TPO levels in patients with severe AA compared with non-severe AA patients. Clinical trials of TPO and a related truncated, pegylated molecule, megakaryocyte growth and development factor (PEG-rHuMGDF), are awaited to determine whether treatment with these drugs will result in increased platelet counts in patients with AA.  相似文献   

13.
In an attempt to evaluate the role of thrombopoietin (TPO) in the pathobiology of aplastic anaemia (AA), we have examined TPO levels in sera from 54 AA patients and 119 healthy controls. A total of 92 samples were collected from AA patients: 43 samples were harvested at diagnosis, 23 samples in the cytopenic period after treatment, and 26 samples when patients were in partial (n=10) or complete remission (n=16) following immunosuppressive treatment. TPO serum levels were assessed by a sandwich-antibody ELISA that utilized a polyclonal rabbit antiserum for both capture and signal. Serum samples from normal donors revealed a mean TPO level of 95.3 +/- 54.0 pg/ml (standard deviation). Mean TPO levels in AA sera collected at diagnosis and before onset of treatment were 2728 +/- 1074 pg/ml (P<0.001 compared to normal controls: mean platelet count at that time: 27x10(9)/l). TPO serum levels of AA patients in partial or complete remission after immunosuppressive treatment were significantly lower than TPO levels at diagnosis (P<0.001). However, despite normal platelet counts (mean 167x10(9)/l), TPO levels remained significantly elevated in complete remission (mean TPO 1009 +/- 590 pg/ml, P<0.001 compared to normal controls). There was a significant inverse correlation between serum TPO levels and platelet counts in AA patients who were not transfused for at least 2 weeks prior to sample collection (coefficient of correlation (r) = -0.70, P<0.0001). In summary, TPO levels were highly elevated in sera of patients with AA. Thus there is no evidence to suggest an impaired TPO response contributing to thrombocytopenia in AA. Thrombopoietin did not return to normal levels in remission, indicating a persisting haemopoietic defect in remission of AA. We hypothesize that elevated levels of TPO may be required to maintain normal or near normal platelet counts in remission of AA.  相似文献   

14.
To evaluate the diagnostic value of thrombopoietin (TPO, c-mpl ligand) measurements, and clarify the regulatory mechanisms of TPO in normal and in thrombocytopenic conditions, the plasma TPO concentration was determined in normal individuals (n = 20), umbilical cord blood (n = 40), chronic idiopathic thrombocytopenic purpura (ITP; n = 16), in severe aplastic anaemia (SAA; n = 3), chemotherapy-induced bone marrow hypoplasia (n = 10), myelodysplastic syndrome (MDS; n = 11), and sequentially during peripheral blood progenitor cell transplantation (n = 7). A commercially available ELISA and EDTA-plasma samples were used for the analysis. The plasma TPO concentration in the normals and umbilical cord blood were 52 +/- 12 pg/ml and 66 +/- 12 pg/ml, respectively. The corresponding values in patients with SAA and chemotherapy-induced bone marrow hypoplasia were 1514 +/- 336 pg/ml and 1950 +/- 1684 pg/ml, respectively, and the TPO concentration, measured sequentially after myeloablative chemotherapy and peripheral blood progenitor cell transplantation, was inversely related to the platelet count. In contrast, the plasma TPO recorded in patients with ITP (64 +/- 20 pg/ml) and MDS (68 +/- 23 pg/ml) were only slightly higher than normal levels. In conclusion, TPO levels were significantly elevated in patients in which bone marrow megakaryocytes and platelets in circulation were markedly reduced, whereas TPO levels were normal in ITP patients, and only slightly increased in the MDS patients. These latter patients displayed a preserved number of megakaryocytes in bone marrow biopsies. Our data support the suggestion that megakaryocyte mass affects the plasma TPO concentration. In thrombocytopenic patients a substantially increased plasma TPO implies deficient megakaryocyte numbers. However, TPO measurements do not distinguish between ITP and thrombocytopenia due to dysmegakaryopoiesis, as seen in MDS patients.  相似文献   

15.
To overcome the need for multiple leukaphereses to collect enough PBPC for autologous transplantation, large-volume leukaphereses (LVL) are used to process multiple blood volumes per session. We compared the efficiency of CD34+ cell collection by LVL (n = 63; median blood volumes processed 11.1) with that of standard-volume leukaphereses (SVL) (n = 38; median blood volumes processed 1.9). To achieve this in patients with different peripheral blood concentrations of CD34+ cells, we analyzed the ratio of CD34+ cells collected per unit of blood volume processed, divided by the number of CD34+ cells in total blood volume at the beginning of apheresis. For LVL, 30% (9%-323%) of circulating CD34+ cells were collected per blood volume compared with 42% (7%-144%) for SVL (p = 0.02). However, in LVL patients, peripheral blood CD34+ cells/L decreased a median of 54% during LVL (similar data for SVL not available). The number of CD34+ cells collected per blood volume processed after 4 and 8 blood volumes and at the end of LVL were 0.32 (0.01-2.05), 0.24 (0.01-1.68), and 0.22 (0.01-2.40) x 10(6) CD34+ cells/kg, respectively (p = 0.0007), despite the 54% decrease in peripheral blood CD34+ cells/L throughout LVL. A median 66% decrease in the platelet count was also observed during LVL. Thus, LVL may be more efficient than SVL for PBPC collection, allowing, in most patients, the collection in one LVL of sufficient PBPC to support autologous transplantation.  相似文献   

16.
BACKGROUND: There is great interpatient variability in the number of peripheral blood stem cells collected, as measured by CD34+ cell content, after the administration of chemotherapy and a growth factor. The ability to predict patients who fail to yield adequate quantities of CD34+ cells would be of value. However, very few reports include large numbers of patients treated in an identical fashion. STUDY DESIGN AND METHODS: Between 1991 and 1995, 497 consecutive patients with a variety of malignant diseases received cyclophosphamide (4 g/m2), etoposide (600 mg/m2), and granulocyte-colony-stimulating factor (6 micrograms/kg/day) for mobilization and collection of a target dose > or = 2.5 x 10(8) CD34+ cells per kg. Multivariate analyses were performed to determine the factors associated with failure to achieve this target harvest. RESULTS: A median of 14.71 x 10(6) CD34+ cells per kg (range, 0.08-137.55) was harvested with a median of 2 (range, 1-11) apheresis procedures. Ninety-one percent of patients yielded > or = 2.5 x 10(5) CD34+ cells per kg. Patients with Stage II-III breast cancer, who had pretreatment platelet counts > or = 150 x 10(9) per L and patients who underwent < or = 1 prior chemotherapy regimen had improved CD34+ cell yields. However, most patients with adverse risk factors yielded > or = 2.5 x 10(6) CD34+ cells per kg. CONCLUSION: A regimen of cyclophosphamide, etoposide, and granulocyte-colony-stimulating factor led to the successful collection of adequate numbers of CD34+ cells in most patients without excessive toxicity. These observations confirm previous reports that intense prior therapy adversely affects the quantity of CD34+ cells harvested. Pretreatment and posttreatment variables did not predict with any certainty the small fraction of patients who fail to yield > or = 2.5 x 10(6) CD34+ cells per kg via multiple apheresis procedures.  相似文献   

17.
We investigated the effect of thrombopoietin (TPO) on the growth of leukaemic blasts from 30 acute myelogenous leukaemia (AML) patients according to the surface expression of CD7 and CD34: 10 patients were CD7 positive (CD7+), nine were CD7 negative/CD34+ (CD7-/CD34+) and the remaining 11 were CD7-/CD34-. Significant growth response of leukaemic blasts to TPO was observed in 10/10 CD7+, 5/9 CD7-/CD34+ and 2/11 CD7-/CD34- AML cases using 3H-thymidine incorporation. Synergistic stimulatory effects of TPO with stem cell factor (SCF), interleukin-3 (IL-3), granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor were observed in both TPO-responding cases (9/17) and TPO-non-responding cases (8/13). In a leukaemic blast colony assay. significant growth response to TPO was observed in 5/6 CD7+ and 4/17 CD7-AML cases examined. However, the effect of TPO on the growth of CD7+ leukaemic blasts was not so potent as that of IL-3 and SCF, both of which support the proliferation of primitive haemopoietic progenitors. Expression of c-mpl (TPO receptor) was significantly higher in CD7+ AML cases than in CD7- cases, suggesting a relationship between expression of c-mpl and proliferative response to TPO. These data indicate that CD7+ leukaemic blasts express functional TPO receptors and proliferate in response to TPO. These observations also imply that CD7 expression on AML blasts may indicate involvement of leukaemic progenitors at an early stage of multipotent haemopoietic stem cells.  相似文献   

18.
Conventional hematopoietic stem cell cryopreservation methods use a DMSO concentration of 10%. However, cells manipulated ex vivo may require more refined freezing protocols adapted to the specific cell suspension. In this retrospective study, we evaluated the results obtained with CD34+ cells purified from peripheral blood of 39 patients on the CEPRATE SC System and frozen in 7.5% DMSO with a view to transplantation. The post-freezing recovery of progenitor cells was 89.4 +/- 27.87% for CD34+ cells, 59.13 +/- 36.93% for CFU-GM, and 53.49 +/- 40.71 for BFU-E. Neither the purity of the suspension nor the nucleated cell density during freezing was predictive of cell recovery. No difference was observed between cells stored in vials and bags. Thirty-seven patients transplanted with the concentrated CD34+ fraction received 4.46 x 10(6) CD34+ cells/kg and 33.04 x 10(4) CFU-GM/kg. The median time to granulocyte (>0.5 x 10(9)/l) and platelet (>50 x 10(9)/l) engraftment was 11 and 13 days, respectively. Only cell density and the infused number of CD34+ cells and CFU-GM were significantly related to hematological recovery. Our data suggest that purified CD34+ cells can be successfully cryopreserved in 7.5% DMSO and may represent a first step in establishing freezing parameters for selected CD34+ cells.  相似文献   

19.
The recent significant improvement in disease-free survival in patients with certain haematological malignancies is due to high-dose chemotherapy and subsequent autologous bone marrow and/or stem cell transplantation. The proliferation and egression of stem cells into the peripheral blood must first be stimulated by defined chemotherapy and/or by administration of cytokines. However, the increase of circulating stem cells in peripheral blood is limited to only a few days. By immunologically analysing white blood cells for the expression of the surface antigen CD 34 it is possible to calculate the numbers of haematopoietic progenitor cells. Thus, besides monitoring haematopoietic recovery, the estimation of CD34+ cells in the peripheral blood can be used to indicate the optimal time point for stem cell collection. Two to four stem cell pheresis (one per day) may then yield sufficient stem cells to enable the safe and rapid reconstitution of haematopoiesis following supralethal chemotherapy.  相似文献   

20.
A 22-year-old woman diagnosed as AML (M3) received myeloablative chemotherapy followed by autologous peripheral stem cell transplantation (PBSCT). Rapid hematopoietic reconstitution occurred. By day 10, the neutrophil count was > 0.5 x 10(9)/l and the platelet count > 50 x 10(9)/l. The platelet count was 145 x 10(9)/l on day 20. Purpura developed on the anterior chest and legs on day 50, at which time the platelet count fell to 17 x 10(9)/l. The BM was hypocellular with an increase in megakaryocytes. Platelet-associated IgG (PAIgG) was 88.1 ng/10(7) platelets (normal range 9-25 ng/10(7)); a diagnosis of idiopathic thrombocytopenic purpura (ITP) was made. Prednisolone administration led to an increase in the platelet count and a decrease in PAIgG. Analysis of lymphocyte subsets revealed an increased number of CD3+ gamma/delta T cells. It is postulated that the thrombocytopenia in this case was due to an autoimmune mechanism such as ITP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号