共查询到20条相似文献,搜索用时 15 毫秒
1.
本研究通过流变相反应-热解法制备了碳包覆钒酸锰锂离子电池负极材料,通过XRD、TEM和电化学测试对材料进行了表征.所制备的材料微观组织呈不规则的短圆柱形和球形,其直径分布在30~50 nm之间,短圆柱形颗粒长度在200 nm左右.在充放电电压为3.0 V到0.02 V范围内,当充放电电流为0.1 A/g时,钒酸锰负极材料首次可逆充电容量为876 mAh/g,经过100次充放电循环后,可逆充电容量为843 mAh/g;以2.0 A/g的大电流充放电时,可逆充电容量仍然保持在334 mAh/g左右,表现出较优秀的大电流充放电能力. 相似文献
2.
3.
4.
锂离子电池正极材料锰酸锂的优化合成 总被引:7,自引:0,他引:7
运用动态多重扫描速率法,根据四条不同升温速率下的DSC曲线,计算出在空气气氛下动态合成LiMn2O4过程中的动力学参数,据此提出一个优化的LiMn2O4固相合成工艺,采用固相分段焙烧法制备LiMn2O4正极材料,第一段和第二段的温度分别设在600和830℃。用XRD对合成的粉体材料进行了相结构分析;用恒电流充放电仪对LiMn2O4的电化学性能进行测试,结果表明,合成样品具有良好的尖晶石相结构,在充放电循环时初始放电容量达122mAh/g,同时具备良好的容量保持能力。 相似文献
5.
6.
采用微波水热法, 以BiVO3·5H2O和NH4VO3为原料, 通过调控前驱液pH可控合成了不同晶体结构的可见光催化剂BiVO4。利用X射线衍射(XRD)、紫外-可见漫反射(UV-Vis)、拉曼光谱(Raman)和场放射扫描电镜(SEM)等手段对所制备的样品进行了表征和分析, 探讨了不同晶体结构BiVO4的形成机理; 同时以亚甲基蓝和一氧化氮为降解对象, 考察了样品的光催化性能。结果表明, 当前驱液pH为3~5时, 制备的BiVO4为四方锆石结构(z-t), 形貌为微米球; 前驱液pH小于2或大于7时, 制备的BiVO4为单斜白钨矿结构(s-m), 形貌为多面体。这可能是由于前驱液pH的变化, 致使前驱液中钒酸根离子和铋离子的存在形式发生了转变, 进而影响BiVO4的形成历程, 使得BiVO4样品的晶体结构、形貌、晶面裸露以及VO4四面体等发生了改变。光催化试验结果表明, BiVO4(s-m)光催化活性优于BiVO4(s-t)。当前驱液pH为9时, 制备的BiVO4(s-m)样品由于结晶度高、 (040)晶面暴露率高和VO4四面体畸变程度大, 表现出优异的光催化活性。 相似文献
7.
8.
锂离子电池电极材料对锂离子电池性能提升起着关键作用.钒的价态较多,构成的钒系电极材料具有层状、尖晶石型、反尖晶石型等多种结构.该系列材料通常具有较高的理论比容量,且合成方式多样,性价比高,因此钒系化合物在锂离子电池电极材料的应用上受到了广泛关注,但目前尚缺少对钒系电极材料的系统性总结.本文综述了以钒的氧化物、无锂型金属离子钒酸盐、含锂型钒酸盐及钒磷酸根聚阴离子材料为主要体系的锂离子电池钒系电极材料,并对各体系的结构及电化学性能进行了总结,针对合成锂离子电池钒系电极材料的主要方法(如固相合成法、溶胶-凝胶法、水热法、碳热还原法、液相沉淀法等)进行概述及分析,还对通过纳米化、特殊形貌控制、复合改性等其他改性方式优化的钒系电极材料的性能进行了介绍,最后对钒系锂离子电池电极材料的研究方向和发展前景进行展望,希望对促进该类材料的研究与产业化应用能有所助益. 相似文献
9.
以硝酸铋和偏钒酸铵为无机源,NaOH为pH值调节剂,利用水热法制备了多种结构和形貌的BiVO4,并利用X射线衍射(XRD)、扫描电子显微镜(SEM)和紫外-可见吸收光谱(UV-vis DRS)等分析手段表征了其物化性质。结果表明前驱液的pH值对制得BiVO4产物的晶型和粒子形貌有很大影响。考察了BiVO4样品在可见光(λ>420nm)下降解罗丹明B的催化活性和总有机碳(TOC)浓度的变化,结果表明前驱液pH值为6.7时所得BiVO4具有最好的光催化活性,可见光催化4h后,罗丹明B的降解率达到95.3%。TOC值随着光解反应时间的延长而减小,表明罗丹明B发生了矿化。另外,对BiVO4光催化剂的晶型、形貌和性能之间的联系也进行了简单的探讨。 相似文献
10.
V_2O_5具有独特的层状结构,适合于锂离子的存储,与传统的锰酸锂、钴酸锂、磷酸铁锂等正极材料相比,具有高的理论比容量、功率密度以及价格低廉、原材料丰富等优势,在作为锂离子电池正极材料方面备受关注。但V_2O_5低的固有电导率及锂离子扩散系数,导致其容量保持率低和倍率性能差;此外,充放电过程中反复的相变会引起结构的不稳定,而且氧化钒会部分溶于电解液,因此表现出差的循环性能。正是由于这些制约因素的存在,对V_2O_5的固有缺陷进行改性研究以提高氧化钒正极材料的电化学性能成为重要的研究热点。将氧化钒进行纳米化以增大比表面积和缩短离子扩散距离,同时通过复合、掺杂改性等方法提高材料的导电性和循环稳定性,从而使V_2O_5正极材料表现出优异的电化学性能成为可能。文章从氧化钒电极材料纳米化,在纳米化的基础上复合导电材料,调节工作电压窗口,掺杂金属离子这四类方法阐述对氧化钒电化学性能的改善,以及各种方法对电极电化学性能的影响。 相似文献
11.
12.
先用溶胶-凝胶法制备出铁酸钡,再把铁酸钡做成电极,经过电解氧化得到高铁酸钡;通过制备模拟电池,研究了不同充放电制度、不同充电时间对高铁酸盐生成的影响;运用循环伏安和交流阻抗等测试方法对高铁酸盐作为正极材料的充放电机理进行了研究;并运用了X射线衍射仪研究了高铁酸盐的晶型结构、纯度等主要性质。结果表明:850℃制备的铁酸盐电极充放电性能较佳,放电容量为44mAh/g,850℃制备的铁酸盐电极循环次数达到1280次,放电容量未出现明显下降,为制备二次高铁电池提供了依据;且高铁酸盐的特征峰较突出,生成效率较好。 相似文献
13.
以3.98mol/L的四氯化钛为前驱体溶液,采用内凝胶法制备了具有尖晶石结构的球形钛酸锂(Li4Ti5O12)粉末。通过XRD、SEM及电化学性能测试等分析手段表明,合成的Li4Ti5O12材料均为纳米一次粒子(晶粒)组成的球形二次粒子(颗粒),且具有较大的比表面积。以这种流动性好、粒径分布均匀、结晶度好的球形钛酸锂为正极材料和Li片为负极材料组成的锂离子电池具有平稳的充放电电压平台和优异的循环性能。在1.0~2.5V充放电,其首次放电容量为173.8mAh/g,经30次充放电循环后,其放电比容量仍有170.2mAh/g。 相似文献
14.
用一步固相法合成了斜方锰酸锂,对其进行了表征并确定了前驱体化合物烧结中的转变过程,以及相互化合间的烧结机制.结果表明,随着煅烧温度的升高,杂相减少,生长出主体相斜方锰酸锂.在700℃以上可以生成均一相的层状斜方类球状和棒状锰酸锂颗粒.两种颗粒的粒度分别为1~5μm和5~15μm.在充放电循环中,斜方锰酸锂结构易于向尖晶石结构转变.在2.5~4.5V范围内以20mA/g电流进行充放电循环,斜方锰酸锂的初始充电容量达到247mAh/g,放电容量为133mAh/g,50次循环后,容量保持率为92%. 相似文献
15.
16.
通过热分解MnCO3和AgNO3的方法制备了具有Ag包覆结构的MnO微米球。分别采用XRD、SEM和恒流充放电技术考察了其晶体结构、颗粒形貌和电化学性能。分析结果表明,该MnO/Ag复合材料结晶度良好,呈球状,直径约1.2μm,Ag包覆在MnO球体表面。当充放电电流密度为34.8mA/g时,MnO/Ag复合材料的首次库伦效率高达70.0%,初始可逆比容量为805.3mA.h/g,经30周循环后,其放电比容量仍保持在407.8mA.h/g。当电流密度增加到190.5mA/g时,其放电比容量仍有320mA.h/g。 相似文献
17.
18.
环境污染和能源短缺是21世纪人类迫切需要解决的两大难题,太阳能取之不尽、用之不竭,如何利用太阳能治理环境污染以及缓解能源短缺问题成为人们关注的焦点.钒酸铋(BiVO4)因其低成本、无毒、光稳定性好、带隙较小、对可见光具有良好的响应等诸多优势,是一种非常有前景的太阳能驱动的半导体光催化剂,成为光催化领域研究的热点.在BiVO4的三种晶体类型中,单斜相BiVO4由于较小的带隙以及特殊的电子结构具有更高的可见光催化活性.但由于纯BiVO4能隙较窄,导致光生载流子极易快速复合,加之材料存在吸附性以及比表面积较小等缺陷,限制了其光催化活性的提高和实际应用.为了提高BiVO4的可见光催化活性,科研工作者主要从两个方面对BiVO4进行改性修饰,一方面从纯BiVO4入手,通过对BiVO4微/纳米结构的可控合成来提高材料的比表面积和吸附性以及对光生载流子的传导能力等;另一方面通过构筑复合材料,以促进光生电子-空穴对的分离,降低其复合概率,进一步拓宽可见光响应范围,提高材料的吸附性和稳定性等,这些研究已经取得了可喜的成果,目前BiVO4材料的光催化效率大幅提升.本文根据提高BiVO4光催化性能的方法不同对BiVO4可见光催化材料的研究进行了综述,主要包括BiVO4微/纳米结构的可控合成、贵金属沉积、元素掺杂、半导体复合以及BiVO4负载五种改性方法,重点介绍了材料在废水中有毒有机污染物降解、光解水制氢、CO2还原以及有机合成等方面的应用.最后针对该领域的研究现状展望了未来的发展方向,并指出了当前研究中亟待解决的问题,以期为开发稳定高效的BiVO4光催化材料提供参考. 相似文献
19.
通过球磨的方法制备了锂离子电池铌锡锑三元合金负极材料。用XRD、TEM和电化学测试对材料进行了表征,用非原位XRD测试研究了材料的反应机理。所制备的铌锡锑三元合金材料颗粒粒径大小分布在2~5μm之间。在充放电电压为1.5V到0V范围内,初始可逆充电容量为568mAh/g,经过20周的循环后,充电容量保持为初始容量的59.2%。由于铌锡锑材料中非活性物质Nb的作用,在相同条件下,与锡锑二元合金负极材料相比,其贮锂容量和循环性能都有明显的提高。 相似文献
20.
钠离子导体(NASICON)型单斜磷酸钒锂[Li_3V_2(PO_4)_3]作为锂离子电池正极材料近年来引起了广泛关注。然而,Li_3V_2(PO_4)_3较差的固有电子电导率(2.4×10~(-7)S/cm)限制了其实际应用,因而对其进行改性研究。改性手段主要有导电层包覆、掺杂、纳米结构设计等。综述了Li_3V_2(PO_4)_3磷酸钒锂的各种改性工艺的最新研究进展,并探讨了存在的问题及对未来的展望。 相似文献