首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
依托合肥地铁盾构下穿五里墩立交工程项目,结合有限差分软件计算,分析施工过程中4个危险断面的地表变形及桩基变形规律. 研究表明:右线隧洞盾构引起地表沉降槽呈单峰型,左线隧洞盾构后沉降槽呈双峰型;当左右线隧洞距离较近时沉降量变化仍呈现单峰型,当左右线隧洞距离较远时,地表沉降量变化则呈现双峰型;桩基距离隧洞越近,其沉降变形越大,实际情况也会越危险;地铁近距左右线隧道盾构依次开挖对土体产生的扰动具有叠加效应,且叠加效应明显. 以数值分析来考虑区间变形,方法简洁可行,从思路上为类似工程分析提供参考.  相似文献   

2.
西安地铁6号线二期工程西关正街—贡院门区间下穿安定门城墙,盾构施工引起城墙较大位移.在线路优化的基础上,提出了城墙基础加固、门洞钢拱架支护及瓮城墙角隔离桩的联合保护措施.考虑到穿越时左、右线线间距较大,分别建立了盾构左、右线下穿城墙的三维有限元分析模型.对不同位置地表沉降测点位移进行了施工全过程分析.主要研究结论:通过三维数值计算,采取加固措施后,地表沉降满足控制标准,城墙处于安全状态;瓮城城墙角部是城墙保护的关键位置;研究结论可为类似工程提供一定的借鉴与参考.  相似文献   

3.
以某城市地铁在建盾构隧道为研究对象,借助数值仿真建立了三维盾构施工有限差分计算模型,给出了盾构施工引起的地层变形三维地层损失预测方法,并对盾构施工地层竖向变形及水平变形计算结果进行对比分析.结果表明,隧道横向地层变形接近"V"形分布,形成的地表沉降槽宽度约为6倍隧道直径;盾构前方土体产生隆起,开挖面后方表现为沉降,沿盾构掘进方向近似呈倒"S"形,并在开挖面前后3倍直径以外逐渐趋于稳定;地层水平变形左右两侧反对称,距隧道中心约1倍直径处地层水平变形值最大,6倍直径以外地层水平变形基本不受施工影响;随着埋深的增加,地层水平变形值减小,隧道拱腰上下一定范围土体向洞外移动.所得结论对城市地铁盾构隧道设计与施工变形控制有指导意义.  相似文献   

4.
以天津地铁盾构区间隧道近距离下穿某砖木结构风貌建筑为背景,采用PKPM软件预判和现场监测相结合的方法,对新建隧道施工所引起的邻近砖木结构风貌建筑物的沉降进行深入研究.分析了盾构下穿建筑物前、下穿过程及离开后3个不同阶段的建筑物沉降变化情况,并提出了在盾构施工过程中控制结构沉降所采取的必要措施,为今后类似工程提供借鉴.  相似文献   

5.
地铁隧道盾构施工将对周边建筑物产生影响,甚至造成灾害.北京地铁10#线某标段穿越附近一栋居民住宅楼地基邻域,为了确保施工过程中建筑物的安全,需要对该建筑物进行变形监测和数值分析与评价.为此,在详细研究该区工程地质条件和地铁设计参数的基础上,采用FLAC3D工程分析软件,结合现场监测研究了该区段盾构施工对邻近建筑物带来的影响与相应的变形特征.研究表明,数值模拟结果和监测数据比较接近,在本研究区域盾构施工对该类壁板式邻近建筑物影响较小,可以保证安全施工.  相似文献   

6.

为了改进传统基于双控指标建筑沉降监测分析思路存在的不足,引入统计过程控制技术对其优化,提出一种新的分析方法. 该方法分别利用$\\bar{X}-R $统计控制图识别沉降变化是否稳定受控,R统计控制图识别差异沉降变化,$ \\bar X$统计控制图识别总体沉降变化,并利用过程能力指数判断相对于阈值沉降控制能力是否满足要求,据此明确工程措施. 结合北京地铁8号线盾构施工邻近古建筑工程项目,验证该方法的合理性. 结果表明:引入统计过程控制(statistical process control, SPC)技术,可科学分析沉降演化过程的动态随机性; 该分析方法不仅可以提出合理的工程措施,而且可以科学验证已执行措施的有效性.

  相似文献   

7.
以济南地铁R2线彭家庄站至济钢新村站区间大角度近距穿越高速为例,研究了在复杂地层条件下盾构对高速路基沉降变形的影响,采取不同阶段的保护对策及技术方案,对盾构下穿设计与施工进行了指导。综合运用理论分析、数值计算及监测相结合,有效解决了下穿段地层沉降控制技术难题,可为类似工程提供借鉴参考。  相似文献   

8.
地铁双线盾构隧道下穿高速铁路路基沉降分析   总被引:2,自引:0,他引:2  
以某地铁双圆盾构隧道下穿高速铁路路基工程为依托,根据天津软土地层条件,采用FLAC3D数值模拟软件,考虑CFG桩复合地基等效、列车荷载、盾构隧道施工壁后同步注浆效果、注浆压力、掌子面土舱压力、施工错距、地下水的影响等因素,模拟了盾构穿越路基的全过程,对路基顶面横向沉降槽形态进行分析研究.研究表明:路基顶面最大沉降量为6.88mm,最大沉降坡度为0.29‰;沉降槽较平坦,形态为单峰,先行隧道施工引起的路基顶面沉降值大于后行隧道引起的路基顶面沉降值.  相似文献   

9.
针对盾构机下穿既有建筑问题,以南通地铁1号线环城东路站至中级人民法院站盾构区间下穿森大蒂花苑老旧居民区为研究对象,基于现场沉降监测,进行盾构施工对既有邻近建筑基础沉降的影响分析,针对盾构隧道下穿该老旧居民区进行数值模拟,综合考虑上部建筑荷载及盾构施工对围岩的扰动,对建筑物基础沉降进行分析。结果表明:盾构机在高富水砂土、粉土中掘进时,由于对地层的扰动和孔隙水消散等原因,易使机头扭转,造成掘进不稳定,最终引起地表沉降;而通过设置合理的土压力值,保持掘进面平衡,尽量使盾构机平稳通过,同时做好注浆、衬砌与地层间缝隙填充等工作,能够有效减小盾构引起的地表沉降。  相似文献   

10.
典型施工工艺条件下,地铁车站与下穿桥结构一体化施工的相关研究较少。本文采用有限元软件MIDAS/GTS对合肥地铁一号线某地铁站的深基坑工程的施工过程采用分段明挖顺作法进行数值模拟分析,并将地表沉降模拟结果与监测数据进行比较。研究表明:长条形地铁车站明挖+局部盖挖+分段分层对称的复合开挖方式对地表沉降的影响较小,且开挖面的转移会使地表沉降产生突变。该结论可为今后合肥类似的地铁车站建设提供参考。  相似文献   

11.
将几种i值计算方法与武汉地铁施工中的实测数据进行了比较并选择较为近似的公式。将地表沉降的Peck经验公式引入纵向土体自由位移场,结合位移控制两阶段分析方法,讨论了武汉地铁盾构施工对邻近地埋管线的影响。最后,通过计算分析了管线附加变形与地表沉降最大值之间的关系,为地铁施工环境影响分析提供一个简化分析方法。  相似文献   

12.
为探究超大直径盾构隧道下穿城际铁路路基沉降规律,以中国武汉两湖隧道工程为例,基于Plaxis有限元软件,建立了铁路路基-土体-隧道的三维精细化数值模型,探讨盾构掘进过程中地层损失率、开挖面支护压力、盾尾注浆压力对隧道上方城际铁路路基沉降的影响.结果显示,盾构下穿复合地层的过程中,高铁路基道砟层表面在盾构掘进方向上会发生不同程度的沉降;当盾构掘进引起的地层损失率从1.0%增加到1.6%时,铁路路基的最大沉降从18.86 mm增加到22.71 mm,增大了20.4%;当开挖面支护力处于隧道拱顶侧向静止土压力的0.7~1.4倍时,不同工况下盾构掘进引起的铁路路基变形差异较小(小于0.67 mm);注浆压力对铁路路基的沉降影响明显,随着注浆压力增大,铁路路基的沉降明显减小.当隧道拱顶注浆压力增大到拱顶侧向静止土压力的3倍(648 kPa)或以上时,沿铁路路基的最大差异沉降未超过规范要求(≤5 mm/10 m).研究结果可为超大直径盾构下穿高铁路基时掘进参数的设置提供参考.  相似文献   

13.
1.引言 近年来随着城市化进程的发展,我国地铁建设加速发展,迅速从北上广等一线城市扩展至二三线城市。地铁在缓解城市交通方面发挥了巨大的作用,但随着地下轨道交通线网的日益完善,地下新建结构对既有结构的保护工作带来严峻的挑战。因此,研究地下结构施工对既有结构的影响具有重要意义。  相似文献   

14.
为研究地铁盾构下穿铁路路基过程中钢轨变形与路基沉降的变化规律,分析路基深孔注浆的加固效果,基于天津地铁7号线盾构施工下穿某铁路工程,采用有限元软件Midas-NX对盾构下穿既有铁路过程进行动态模拟,分析了盾构穿越过程中有无深孔注浆时钢轨的水平与竖直变形,以及盾构施工完成后铁路路基竖向位移的分布规律.结果表明,钢轨的横向变形经历了两次先增后减的过程,并沿轨身呈对称分布;钢轨变形在盾构两次到达铁路正下方时达到极值,沿轨身沉降槽中心随施工步骤逐渐向工程中心移动;土层经深孔注浆加固后,钢轨的横、竖向位移以及路基沉降分别减小了85.1%、76.7%和74.1%,有利于保证铁路在地铁盾构过程中的安全性.  相似文献   

15.
结合广州地铁5号线盾构施工中遇到的过街通道桩基础处理问题,对处理方案进行了分析比较,提出了合理的人工挖孔桩+钢纤维喷射混凝土横通道方案,通过自下而上分层施工,实现了在软土地层中横通道无筋支护施工,解决了盾构通过范围不能遗留钢筋混凝土的难题,并控制了风险.该方案在施工中得到了成功应用,对于其他类似工程,具有良好的实践参考价值.  相似文献   

16.
近邻上覆既有管线进行盾构开挖会引起管线产生附加变形,进而会影响到既有管线的安全。这方面的理论研究,大多数将既有管线简化成Euler-Bernoulli梁搁置在Winkler和Pasternak地基模型上,未考虑管线的剪切效应及三参数Kerr地基模型对管-土相互作用的影响。基于此,提出了一种可预测管线纵向变形的解析方法。采用Loganathan公式获得隧道开挖引起周围土体自由竖向位移,把土体自由竖向位移附加在既有管线轴线上,将既有管线简化成可考虑剪切变形的Timoshenko梁,管-土相互作用采用Kerr地基模型,基于提出剪切层弯矩的计算假设,结合管线两端的边界条件获得管线在盾构隧道下穿作用下受力变形响应。工程案例研究结果表明:与既有文献存在的理论分析方法比较,该方法计算得出的理论解析结果更加贴近实测数据;与Euler-Bernoulli梁计算结果比较, Timoshenko梁给出的计算结果更具有优越性。进一步参数研究表明:随着既有管线剪切刚度的增大,管线抵抗变形的能力逐渐增大,这会导致隧道下穿引起的管线变形逐步减小,但会引起管线内力反向增大;随着地层损失率增大,既有管线受到的外力逐步增大,使得管线变形及其内力也逐渐增大;随着管线直径的逐渐增大,管线在隧道下穿作用下引起的管-土相互作用力逐渐增大,最终导致既有管线所受到的应力应变也会增大。  相似文献   

17.
利用FLAC^3D模拟了盾构隧道开挖对管线的影响。模拟过程中考虑了隧道应力逐步释放,然后逐步施作衬砌,并考虑盾构机的推进力。充分考虑了盾构开挖对不同管径,不同埋深的地下管线位移的影响。模拟了双圆隧道施工对地下管线的影响,对比了单孔盾构开挖于双圆盾构开挖对管线作用的机理的不同。分析了两种双隧道开挖对地下管线的影响。结果表明,管线与隧道相对位置以及管线自身的刚度、管径等不同,将对其变形产生较明显的影响,得出的规律为今后类似工程施工提供依据。  相似文献   

18.
为研究地铁盾构隧道下穿高铁路基时的变形规律及其影响因素,以西安市实际工程为背景,建立三维数值模型,分析地铁盾构隧道下穿既有高铁路基时高铁路基位移、道床位移等因素的变化规律。同时,利用正交试验研究隧道开挖间距、隧道下穿角度等因素对高铁路基的影响。结果表明:盾构隧道施工完成后,路基和道床的最大竖向位移分别为9.18、7.43 mm;路基土体横向最大位移不同方向分别为0.24、-0.29 mm;道床最大位移不同方向分别为0.17、-0.13 mm。此外,竖向净距对既有高铁路基与高铁路基道床竖向变形影响最大;下穿角度对既有高铁路基道床横向变形影响最大。  相似文献   

19.
基于FFTA的地铁盾构隧道下穿既有轨道风险评估   总被引:1,自引:0,他引:1  
依托福州地铁1号线盾构隧道下穿既有轨道工程实例,建立造成轨道变形的主要风险因素的故障树模型.通过运用故障树分析方法对轨道变形的风险进行定量分析,得出轨道变形事故的发生概率及故障树底事件的重要度.并在评估底事件发生概率的模糊性上采用专家判断法结合模糊集理论的方法.该方法为地铁盾构隧道下穿既有轨道的风险控制提供参考.  相似文献   

20.
针对北京地铁五号线地铁车站基坑施工条件下既有盾构隧道的复合变形问题,基于ANSYS,结合场地的水文地质和工程地质条件,按照不同的工况建立了三维数值模型,并进行了施工过程的模拟.通过对结果的对比和分析,揭示了在不同施工状态下,基坑周围土体、支护结构及既有盾构隧道之间相互作用的过程和机理,以及由此引起的围岩变形的分布与变化规律.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号