共查询到20条相似文献,搜索用时 15 毫秒
1.
采用升华硫与高比表面积活性炭在一定条件下合成了一种新型碳硫纳米复合材料。用该复合材料作为正极活性物质所制备的锂蓄电池具有较好的循环性能和高的比容量、比能量。通过X射线衍射(XRD)、比表面积(BET)、扫描电子显微镜(SEM)等材料分析测试手段,对复合材料的物理化学性能进行了分析,利用循环伏安、交流阻抗和电池充放电对材料的电化学性能进行了测试。结果表明,与传统硫电极比较,此复合材料表现出了很好的电化学性能,其初始放电比容量高达600mAh·g-1,经过50次循环之后,比容量仍保持在400mAh·g-1。 相似文献
3.
以碳化树脂微球的方法制备了孔径小于0.6 nm的微孔碳球,通过热处理的方式制备了微孔碳球负载小硫分子的A-MRF/S复合材料。S EM、EDS和XRD结果表明硫以小硫分子S2-4的形式均匀存在于微孔碳球中。充放电测试表明:在0.2 C电流密度下,A-MRF/S正极首次放电比容量为847.1 mAh/g,100次循环后,比容量仍保持在630.5 mAh/g,且每圈的库仑效率均接近100%;在2 C电流密度下,A-MRF/S正极的放电比容量仍有539.7 mAh/g。A-MRF/S正极优异的循环性能、库仑效率和倍率性能,主要得益于小硫分子固-固转变的电化学反应过程。 相似文献
4.
分别以气相生长碳纤维(VGCF)、多壁碳纳米管(MWCNT)和活性炭(AC)作为单质硫载体,通过高温热处理制备锂硫电池用S/C正极材料。采用SEM、XRD、热重分析(TG)、循环伏安、电化学阻抗谱(EIS)和恒流充放电等方法,分析复合材料的结构及电化学性能。碳材料形态对锂硫电池的放电比容量和循环性能有重要影响,S/VGCF复合材料的电化学性能较好。以0.1 C的电流在1.5~3.0 V充放电,首次和第100次循环的放电比容量分别为1 204.87 m Ah/g、547.62 m Ah/g。 相似文献
5.
采用单质硫与KS6合成石墨在一定条件下合成了一种新型硫碳复合材料.通过扫描电子显微镜法(SEM)、X射线衍射光谱法(XRD)、布鲁瑙尔-埃利特-特勒法(算比表面积)(BET)对该材料进行了结构表征,利用循环伏安扫描和不同电流密度下恒电流充放电实验对复合材料的电化学性能进行了测试.结果表明:该复合材料具有容量利用率高,大... 相似文献
6.
7.
探讨了硫正极中掺入锂离子正极材料(磷酸铁锂LiFePO4、三元材料NCM、富锂锰基材料LRMB)对锂硫电池性能的影响。研究发现,富锂锰基材料最有利于提高锂硫电池的电化学性能,并且其添加量为10%(质量分数)时,效果最好。通过一系列电化学性能测试发现,硫正极中掺杂锂离子正极材料能够调控活性硫的电化学行为,促进可溶性长链多硫化锂(Li2Sx)向难溶性短链硫化锂(Li2S)的转化,进而提高锂硫电池的电化学可逆性,降低电池的极化现象。这为提高锂硫电池的电化学性能提供了新的思路。 相似文献
8.
9.
10.
11.
以活性炭、乙炔黑、多壁碳纳米管和超级电容器用有机系活性炭(OAC)作为碳材料,通过分段加热的方式制备锂硫电池正极用硫/碳复合材料。元素分析、XRD、SEM、比表面积分析、循环伏安和恒流充放电等实验结果表明:OAC的综合性能最好,具有2 304.80 m2/g的比表面积和1.138 3 cm3/g的孔容,与硫复合材料以0.2 mA/cm2的电流在1.5~3.0 V充放电,首次、第20次循环的放电比容量分别为1 189.2 mAh/g和1 068.7 mAh/g,第20次循环的容量保持率为89.87%。 相似文献
12.
对热电池正极材料钒氧碳(VOC)的合成方法及性能特点作了评述。实验在不同工艺条件下的热反应制得不同成分的VOC材料,运用X射线衍射光谱法(XRD)和扫描电镜技术对所得产物进行了物相分析及形貌分析,并对其作为热电池正极材料的放电性能作了检测研究。实验结果表明:反应物配比、煅烧时间和温度对生成的VOC物相及性能都有重要的影响。粉末颗粒径向粒径小,比表面积较大的层片状及细棒状材料满足Li+快速扩散,使电池能够在较大电流密度下以较高的电压放电。对VOC材料进行放电性能测试发现,VOC能够提供较高的电压和平稳的放电平台,同时该化合物的重现性较好,容易加工成型,是一种较为理想的正极材料。 相似文献
13.
锂硫电池是一类极具发展前景的高容量储能体系,将是下一代电动汽车以及混合电动汽车的化学能源。通过十余年的研究和开发,虽然对其电化学过程中复杂反应机理还没有完整系统的理论描述,但是围绕锂硫电池的研究取得了很多成果。回顾了过去十余年在锂硫电池正极材料领域取得的研究成果,介绍了锂硫电池正极材料的研究现状,分析了该体系的缺陷和存在的问题,并展望了今后锂硫电池的研究方向。 相似文献
14.
《电源技术》2015,(10)
单质硫的导电性一直是需要解决的关键问题。为了有效抑制一些多硫化物的产生,现在有效的措施是碳的复合、金属氧化物的混合填充,以及电解液的改善。在碳硫复合材料中"填充"过渡金属氧化物,这些氧化物通常具有离子选择性。这样的复合材料,能够抑制多硫化物的溶解,改善电池的循环性能。纳米氧化物利用其吸附性可以有效抑制硫及其还原产物在电解液中的溶解,提高正极反应的表面积,并对电池的氧化还原反应起到催化作用。通过对锂硫电池正极材料单质硫的导电特性进行研究,研究"填充"Ni O对单质硫电化学性能的影响,并采用XRD、SEM、粒度分析仪对电池材料物相、颗粒形貌和粒度分布进行表征。利用高精度电池性能分析测试系统等对正极材料、电池进行电性分析。 相似文献
15.
以3-丁基噻吩作为导电聚合物,三聚硫氢酸作为交联剂,采用自由基法制备环状结构锂硫复合正极材料。用X射线衍射仪(XRD)、热重分析仪和扫描电镜来表征材料的结构和形貌,结果表明,复合材料形成了明显的环状结构,相互间结合紧密,硫含量大约为质量分数60%。电化学性能测试表明,当电流密度为167.5 mA/g时,电池的首次和第100次放电比容量分别为1 356和910 mAh/g;当电流密度增加到3 350 mA/g时,放电比容量仍然有498 mAh/g,说明制备的复合正极材料大倍率电化学性能好,具有强的结构稳定性。 相似文献
16.
18.
19.
20.
采用多壁碳纳米管(MWCNT)、气相生长碳纤维(VGCF)、活性炭(AC)为单质硫的载体,通过高温热处理的方法制备锂硫电池用S/C正极材料。通过对所得材料进行X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、热重分析、恒流充放电及循环伏安测试等对材料的结构及电气性能进行分析。研究发现,锂硫电池的放电比容量及循环性能受碳材料的影响较大,其中S/VGCF复合材料的电化学性能较好,当以0.1 C的电流在1.5~3.0 V进行充放电时,其首次和第100次循环的放电比容量分别为1 205.62、613.18 m Ah/g。 相似文献