首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以碳微球为模板制备中空ZnO微球,接着采用浸渍法将防霉剂填充在中空ZnO微球中,同时对其在水中的缓释效果进行了研究.采用扫描电镜(SEM)和透射电镜(TEM)研究了反应时间和葡萄糖浓度对碳微球形貌的影响,以及不同碳微球模板对中空ZnO微球形貌和结构的影响.SEM和TEM测试结果表明:采用水热法成功地制备了尺寸为50~200nm的碳微球和40nm左右的中空ZnO微球.缓释实验结果表明:载药中空ZnO微球从1h到9h释放的防霉剂浓度从0.008 3mg/mL增加到0.021 4mg/mL,缓释效果明显.  相似文献   

2.
为了提高碳材料作为钠离子电池负极的首次库伦效率和比容量,采用三聚氰胺作为氮源,利用简单的喷雾干燥法制备出掺氮木质素基碳微球(NLC),通过TEM、XPS表征其结构,并测试其电化学性能.结果表明:木质素基碳微球为典型的硬碳结构;氮元素成功地掺杂进了碳材料;在电流密度为20 m A/g时,木质素基碳微球的可逆比容量为123 m Ah/g,首次库仑效率为36.28%,而掺氮后的木质素基碳微球可逆比容量为205m Ah/g,首次库仑效率为51%.对比发现,掺杂氮元素可引入缺陷,提高碳材料的电子导电性,不仅增加了钠离子电池的比容量,同时首次库仑效率也得到了提升.  相似文献   

3.
制备了可用作靶向药物载体的磁性β-环糊精聚合物微球.以环氧氯丙烷为交联剂,使β-环糊精包裹在Fe3O4表面上,制得了磁性β-环糊精聚合物微球.用正交实验法确定磁性微球的最佳制备条件:搅拌速度500 r/m in;OP浓度,w=4%;β-CD 8 g;环氧氯丙烷35mL.最佳条件下磁性微球的粒径和Fe3O4含量(质量分数)分别为1.62μm、72.3%,磁响应性较强,磁化率为8.56×10-4cm3/g.同时采用TEM、IR、XRD对磁性微球结构进行了表征.  相似文献   

4.
以单分散三聚氰胺-甲醛微球为模板,通过煅烧除去模板,制备出粒径均一的铕掺杂氧化钇空心微球荧光材料. 利用扫描电子显微镜、透射电子显微镜、傅立叶变换红外光谱仪、X射线衍射仪、荧光分度计对氧化物空心微球荧光材料进行表征. 结果表明:成功地制备了铕掺杂氧化钇单分散空心微球,铕元素掺杂进入氧化钇晶体后对氧化钇晶型没有影响,随着铕元素含量的增加,晶格常数逐渐增大. 铕掺杂氧化钇空心球在613 nm处均表现出强烈的发射峰,当铕元素掺杂量为原分子数x=5%时,荧光强度最强;随着铕元素含量的增多,电荷迁移带红移,表明铕-氧键共价性逐渐减弱、离子性逐渐增强.  相似文献   

5.
采用无皂乳液聚合法制备了单分散亚微米级聚苯乙烯微球.考查了过硫酸铵的浓度和交联剂的用量对聚苯乙烯微球粒径、粒径分布及聚苯乙烯转化率的影响.结果表明:随着硫酸铵浓度的增加,聚苯乙烯粒径增大,单分散指数有增大的趋势;增加交联剂的用量,聚苯乙烯微球的粒径减小;转化率增加、单分散指数变大,当引发剂的浓度为12 mg/mL,交联剂含量为10.03%时,粒子粒径为0.523μm,制得的聚苯乙烯微球仍然呈现单分散性,聚苯乙烯表面和断面SEM图表明合成的胶体晶体材料三维高度有序.  相似文献   

6.
采用微波辐射,在金属盐硫酸亚铁为助催化剂的条件下,对玉米秸秆进行稀酸水解制备还原糖的研究,考察了硫酸亚铁质量分数、硫酸质量分数、液固质量比、微波辐射功率、微波辐射时间和微波辐射压力对水解制备还原糖产率的影响。结果表明,硫酸亚铁质量分数3%、硫酸质量分数2%、液固质量比15、微波辐射功率187.5W、微波辐射时间30min、微波辐射压力0.3MPa为最佳水解条件,在此条件下还原糖产率可达38.5%,与无金属盐时的微波辐射稀酸水解方法相比,还原糖产率增加了1.1倍,与无微波辐射时的稀酸水解方法相比,还原糖产率增加了2.8倍。  相似文献   

7.
间接电氧化制苯甲醛最佳工艺条件的研究   总被引:2,自引:1,他引:2  
通过对间接电氧化制苯甲醛过程中电解温度、酸浓度原料摩尔浓度以及氧温度等因素进行考察,得到了最佳工艺条件.即电解条件为:硫酸浓度8.0 mol·L-1,温度323 K;甲苯氧化条件为:硫酸浓度8.0 mol·L-1,温度333 K.不仅使间接电氧化工艺中的电解与氧化两个阶段保持了酸浓度的一致,而且使电解过程的电流效率增加了13.22%左右,甲苯氧化反应的苯甲醛产率增加了6.67%左右.  相似文献   

8.
制备了铂/碳球金刚石复合电极(Pt/Cs/NBDD),对污水中的苯酚进行了电化学分析。通过对硫酸浓度、铂/碳球(Pt/Cs)修饰量的优化发现:当硫酸浓度为1.0 mol/L、修饰量为9μL时其灵敏度较高、催化活性最好,在最优条件下对实际样品进行检测,其线性范围为4.25×10~(-6)~6.38×10~(-4)mol/L,线性方程为Y=-14.860X+80.743,R~2=0.995,加标回收率为94.11%~100.07%,回收效果较好,方法准确度较高,符合试验要求,具有较强的适用价值。  相似文献   

9.
研究了磁性壳聚糖微球固定化脂肪酶,旨在增加脂肪酶的重复利用率.利用悬浮交联法制备出粒径为40~60μm的磁性壳聚糖微球,微球经接枝、叠氮化修饰后用于固定化脂肪酶.通过响应面法考察反应条件对固定化酶的影响,得出最优固定条件:酶浓度4 mg/mL,反应时间8.4 h,反应温度39.3℃,pH值为7.0.结果表明,最优条件下载体微球实际载酶量为64.4 mg/g,与预测值相接近,证明该方法可以用于固定化脂肪酶.  相似文献   

10.
以壳聚糖微球为载体制备固定化脂肪酶制剂并研究其催化性质.首先,制备壳聚糖微球,用2%醋酸溶液溶解壳聚糖,以液体石蜡为分散剂制成壳聚糖微球;然后,通过戊二醛交联制备固定化脂肪酶制剂,并研究其催化性质.结果表明:壳聚糖微球在2%戊二醛浓度下常温下交联9 h,脂肪酶固载率可达60%.与游离脂肪酶相比,壳聚糖微球固定化脂肪酶的最适底物、最适p H值及最适温度分别转变为4-硝基苯基辛酸酯,p H 8.57及50℃.固定化脂肪酶重复实验6次后仍保留有47.7%的催化活性,置于60℃下4 h酶活保留73%,其金属离子K+和Mg2+最适浓度分别为0.15 mol/L,0.10 mol/L.  相似文献   

11.
以聚乙烯醇(PVA)为乳化剂、二氯甲烷和乙酸乙酯混合液为油相,通过超声辅助乳化溶剂挥发法制备沙棘油-聚乳酸羟基乙酸(PLGA)缓释微球.以微球综合质量指标(S值)为标准,探讨了PVA的质量浓度、芯材比(W/W)、超声功率和超声时间等因素对微球质量的影响.通过正交试验确定最佳工艺条件为:PVA质量浓度0.125 g/mL,芯材比8∶5,超声时间10 min,超声功率180 W,在此条件下制备的微球表面平滑、球形圆整、包埋效果好.  相似文献   

12.
采用微波辐射法制备了油酸(OA)表面修饰的Fe_3O_4颗粒,透析后得到稳定的Fe_3O_4磁流体。在Fe_3O_4磁流体和十二烷基硫酸纳(SDS)的存在下,以甲基丙烯酸甲酯(MMA)和2-丙烯酰胺基-甲基丙磺酸(AMPS)为单体,采用微波辐射乳液聚合法制备了MMA-AMPS共聚物包覆Fe_3O_4磁性高分子微球,并对磁性高分子微球的形态与结构进行了表征,测定了磁性高分子微球的粒径、磁含量和饱和磁化强度。结果表明:在优化聚合反应条件下,通过微波辐射乳液聚合法可制备出粒径为0.25~0.50μm,饱和磁化强度为4.2emu·g-1的磁性高分子微球。  相似文献   

13.
乳液聚合法制备聚苯乙烯微球   总被引:1,自引:0,他引:1  
采用乳液聚合法制备了聚苯乙烯(PS)微球,对制备条件进行了研究。电镜分析表明,PS微球平均粒径约为35nm,且随乳化剂浓度的增加而减小。PS微球易溶于非极性或弱极性溶剂,而不溶于极性溶剂中。XRD分析表明,PS微球为非晶结构。  相似文献   

14.
无皂乳液聚合制备微米级单分散聚苯乙烯微球   总被引:1,自引:0,他引:1  
采用无皂乳液聚合法制备了具有单分散性的微米级聚苯乙烯微球.研究表明,在一定反应条件下,随着苯乙烯和引发剂浓度的增大,聚苯乙烯微球的粒径增大,分布变宽,且引发剂一次加入有助于形成单分散的聚苯乙烯微球.所制备的聚苯乙烯微球标准偏差δ为0.15 μm,分散系数ε为0.03,且具有良好的球形度,表面光滑,无破损,无缺陷.  相似文献   

15.
以酸变性木薯淀粉为原料,采用水包水乳液法在不同温育温度下制备了凝沉型和交联型淀粉微球,并对微球的产率和理化特性进行比较研究。随着温育温度的提高,凝沉型淀粉微球的产率降低,但交联型淀粉微球的产率提高。温育温度为6℃时,凝沉型淀粉微球产率最高,达到79.8%。交联型淀粉微球的溶胀率和亚甲基蓝吸附量明显大于凝沉型淀粉微球。扫描电镜照片显示,凝沉型和交联型淀粉微球基本均为球形,但凝沉型淀粉微球表面较粗糙且有多个小凹坑,而交联型淀粉微球表面较致密。X射线衍射图谱显示凝沉型淀粉微球为部分结晶结构,而交联型淀粉微球为无定形结构。热重分析结果表明,凝沉型淀粉微球的热稳定性明显高于交联型淀粉微球。  相似文献   

16.
为探讨涡流空化强化载药壳聚糖微球的制备效果,研究传统离子凝胶法制备壳聚糖载药微球的最佳工艺,了解空化强化制备的载药微球的体外释放规律,在单因素试验的基础上,通过四因素三水平的响应面分析法研究了壳聚糖质量浓度、甲基异噻唑啉酮(MIT)浓度、三聚磷酸钠(TPP)质量浓度、搅拌转速对壳聚糖抗菌微球包封率的影响.结果表明,响应面法优化的最佳工艺为:壳聚糖质量浓度3.5 g/L,MIT浓度0.50 mmol/L,TPP质量浓度2.5 g/L,搅拌转速1 500 r/min,搅拌时间20 min,载药微球包封率为37.64%;在此基础上,涡流空化20 min,涡流空化出口压力0.3MPa时,微球的包封率达50.33%,比传统法优化后制备微球的包封率高了12.69%;涡流空化制备的载药微球在体外释放60 h后,MIT的累积释放量达78.79%.与传统离子凝胶制备方法相比,涡流空化能有效提高壳聚糖微球载药的包封率.  相似文献   

17.
以葡萄糖为碳源,用水热法成功制备了碳微球,再以Ti(SO_4)_2为钛源,制备了核壳结构的C/TiO_2复合微球.为提高材料介电损耗,将样品在N_2氛围中不同温度条件下进行了碳化.采用X射线衍射仪、扫描电子显微镜和透射电子显微镜对样品的结构和形貌进行了表征,用矢量网络分析仪测试了样品在2~18 GHz范围的复介电常数,并计算其反射损耗.结果表明:碳微球具有较高的微波介电损耗;碳微球与TiO_2复合后,在相同层厚条件下,反射损耗峰向低频迁移;700℃和800℃碳化下的C和C/TiO_2复合材料具有优良的微波吸收性能,其中C-700复合材料最小反射损耗达到-41.2 dB,低于-10 dB的最大吸收带宽达到4.5 GHz,C/Ti-700复合材料的最小反射损耗为-30.0 dB,最大吸收带宽达4.2 GHz.  相似文献   

18.
采用分散聚合法,在Fe3O4磁流体存在下,通过PVA分子单体共聚制备出磁性聚乙烯醇微球.微球粒径分布在2.5×10-2~5×10^-2 μm,其中3.7×10-2~4.1×10^-2 μm的微球占总微球的44%,制备微球粒径分布均匀.以磁性聚乙烯醇微球为载体,通过戊二醛交联法进行ALDC的固定化,制备固定化酶,并对其固定化条件进行了初步研究.结果显示,在酶固定化过程中,自由酶的添加量为20 mL/g微球,戊二醛的添加量为0.98%.在其固定化最佳条件下,制备的固定化ALDC的活力为65 180 U/g,而且其比活、活性回收率分别可达872.32 U/mg和42.33%.  相似文献   

19.
利用稻壳为原料制备了二氧化硅-木质素复合微球,并对微球进行了水热法处理。利用两种微球作为吸附剂对硝酸银溶液进行了吸附实验。通过SEM、TEM、XRD和TGA对微球的结构形貌和性能进行了表征,发现水热处理后的微球中木质素含量明显上升,壳层稳定性也有所改进,微球对银离子具有还原作用,吸附后微球表面有银单质生成。在银离子浓度为0.02mol/L时,90℃水浴条件下反应24h,未经水热法处理的微球吸附量为21.7mg/g,水热法处理后微球吸附量达到55.6mg/g。  相似文献   

20.
以聚氨酯(PU)增稠的甲基丙烯酸甲酯(MMA)为分散剂、硅烷偶联剂KH-570为表面改性剂,通过球磨法利用偶联剂对超细负离子粉表面进行有机官能团改性,并制得悬浮性良好的分散料浆,再以此为分散相、水为连续相、聚乙烯醇(PVA)为分散稳定剂、过氧化苯甲酰(BPO)为引发剂,通过悬浮聚合制备包含有超细负离子粉末的聚合物微球。对微球制备过程中相关因素的分析结果表明:随着分散阶段搅拌速度的增大,微球粒径减小、负离子粉包覆率降低;聚氨酯含量的适当增加可以相应提高微球中负离子粉的有效含量;当搅拌转速为550r/min、BPO含量为1.4%、PVA浓度4.3%、PU加入量5.0%时,可以制得平均粒径25μm、负离子粉包覆率较好的聚合物微球。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号