共查询到20条相似文献,搜索用时 0 毫秒
1.
为了获得城市轨道交通客流量的变化趋势和更好地掌握客流量的波动范围,本文提出了一种基于模糊信息粒化和混沌粒子群算法(CPSO)优化最小二乘支持向量机(LS-SVM)的客流量波动范围组合预测模型.针对客流量的非线性和波动性,采用模糊信息粒化,将客流量数据根据需要按窗口提取有效信息,利用CPSO较强的全局搜索能力对LS-SVM预测模型的参数进行最优选取.最后运用组合模型预测2014年广州市地铁3号线体育西路站早高峰客流量波动范围,并与其他模型进行对比分析.仿真结果表明,本文组合预测模型能有效地跟踪客流量变化趋势,为预测未来一段时间内的短期客流量波动范围趋势提供了一种行之有效的方法. 相似文献
2.
为了提高滚动轴承性能退化指标的预测精度,得到性能退化指标的一个预测范围,本文提出信息熵与优化最小二乘支持向量机(LS-SVM)的轴承性能退化趋势模糊粒化预测。首先利用信息熵理论提取轴承信号的性能退化指标序列,再利用模糊信息粒化理论对该性能退化指标序列进行模糊信息粒化;然后将粒化后的数据输入给LS-SVM进行回归预测,并采用粒子群算法(PSO)优化LS-SVM的惩罚参数和核函数参数;最后根据实测值和预测值的对比分析评估预测模型的优良性。实验结果表明,对于每个时间段内的轴承性能退化指标,该方法均能获得准确的预测结果,具备较强的实用性和工程应用价值。 相似文献
3.
针对滚动轴承的性能退化指标及其波动范围难以有效预测的问题,提出了一种基于模糊信息粒化与小波支持向量机的滚动轴承性能退化趋势预测方法。首先以一定的时间间隔采集滚动轴承运行过程中的振动信号序列,提取各个振动信号序列的特征指标,对特征指标序列进行模糊信息粒化,进而提取各个粒化窗口的有效分量信息;随后通过构建小波支持向量机对各个指标分量分别建立预测模型,实现对滚动轴承性能退化指标的退化趋势及波动范围的预测。实验结果表明,该预测方法可以有效跟踪滚动轴承性能衰退指标的变化趋势,并对其指标的波动范围进行有效预测。 相似文献
4.
5.
以合肥地铁2018年实际线网客流数据为测试样本,通过时间序列模型来预测客流量,用前半段的数据为训练样本,预测后半段的客流数据,并将预测结果与实际数据做对比来验证准确性. 相似文献
6.
航空发动机油样光谱分析的PSO-LSSVM组合预测方法 总被引:1,自引:0,他引:1
油样光谱分析是航空发动机磨损状态监测与故障诊断的重要技术,基于光谱数据的航空发动机状态预测有利于发现航空发动机的早期磨损故障。根据光谱数据特征,选取AR模型、BP神经网络模型以及GM(1,1)预测模型作为基础模型,建立了基于最小二乘支持向量机的组合预测模型,同时,用粒子群算法对LSSVM的正则化参数以及核函数参数进行了优化。最后利用两组实际的航空发动机光谱分析数据对模型进行了验证,与基础模型的对比结果充分表明,提出的带粒子群优化的最小二乘支持向量机(the Least Squares Support Vector Machines with Particle SwarmOptimization-PSO-LSSVM)的非线性变权重组合预测模型具有更好的预测精度。 相似文献
7.
文中提出了一种新的基于混沌算法优化的粒子群(CPSO)算法,该算法在种群初始化时应用混沌算法优化粒子的初始位置,扩大粒子的有效搜索范围,在陷入局部最优时应用混沌算法遍历整个搜索空间,跳出局部最优.仿真实验证明该算法寻优性能优于当前其他PSO算法.利用CPSO对LSSVM的参数进行优化选择,建立多传感器数据融合模型.将该模型应用于压力的检测,实验证明了该方法优于当前其他主要方法. 相似文献
8.
针对钢铁企业高炉煤气消耗量存在的波动大、随机性强、难以预测等特点,引入能量剩余函数,提出了一种与粒子自身能量相关的能量诱导型粒子群(Energy Guided Particle Swarm Optimization,EGPSO)算法。利用其对最小二乘支持向量机(Least Square Support Vector Machine,LSSVM)的参数进行优化,最后采用优化后的最小二乘支持向量机模型(EGPSO-LSSVM)进行高炉煤气消耗量预测。仿真实验表明:改进后的预测模型在平均绝对百分比误差、均方误差、均方百分比误差三项指标上均优于普通BP神经网络模型和普通最小二乘支持向量机模型,可以为高炉煤气资源的合理使用提供依据。 相似文献
9.
针对现有短期负荷预测方法适应性不足、预测精度不高,WNN原始连接权值和阈值采取随机赋值并采用梯度学习算法进行修正,存在进化缓慢、易出现陷入局部极小或不收敛等问题,提出了基于高斯FIG和改进WNN的短期负荷区间预测新方法。用收敛速度更快的函数取代常用的输出层神经元函数,并用粒子群算法寻优取代WNN连接权值和阈值随机赋值。把网络连接权值和阈值作为粒子群算法微粒的位置向量,不断调整微粒的速度和位置向量以寻求最优值。选择了合适的数据跨度作为一个粒化窗口,对原始负荷数据进行了高斯模糊粒化处理,得到了对应的高斯FIG后的序列值,并用改进后的WNN对模糊序列值进行了区间预测。与WNN及SVM方法的对比研究结果表明,该方法不仅能够获得比单一负荷值更多的区间信息,而且预测精度更高,能够更好地指导电力系统相关决策。 相似文献
10.
11.
为提高基于最小二乘支持向量机(LSSVM)的时间序列预测方法的泛化能力与预测精度,研究了一种基于粒子群优化(PSO)的LSSVM。该方法以交叉验证误差为评价准则,利用PSO对多个具有不同超参数的LSSVM进行基于迭代进化的优化选择,并以交叉验证误差最小的LSSVM作为最终优化后的LSSVM。时间序列预测实例表明,经PSO优化后的LSSVM的预测精度高于未经优化的LSSVM与传统时间序列预测方法的预测精度。 相似文献
12.
基于CPSO与LSSVM融合的发酵过程软测量建模 总被引:2,自引:0,他引:2
发酵过程是一个复杂的时变、非线性、强耦合过程.发酵过程中的关键参量菌体浓度通常难以用传统物理传感器实时在线检测.为了测量该参数,将CPSO算法与LSSVM相结合构建发酵过程软测量模型.模型采用CPSO算法优化LSSVM软测量模型参数,克服了常规交叉验证法选取参数的耗时和盲目性.仿真结果表明,CPSO-LSSVM软测量模型较LSSVM软测量模型更能在较短的时间内获得较高的收敛精度,其平均误差为2.05%,说明该软测量模型可用于发酵过程不可在线测量的菌体浓度的实时在线软测量,并且预测精度高,预测速度快,预测能力强.该软测量建模方法也为发酵过程其他关键参量的实时在线测量提供了新的途径. 相似文献
13.
为提高钢坯定重切割精度,分析了钢坯质量与钢坯平均拉速间的关联性。建立了钢坯拉速数据的模糊信息粒化模型,将每5根钢坯的平均拉速数据变换为一个三角型模糊粒,得到模糊粒子中的3个参数:钢坯平均拉速变化的最小值vLow、均值vmid和最大值vup,降低钢坯拉速数据的复杂度,得到含不同信息的拉速数据粒化子集。建立了基于信息粒化数据的支持向量机(SVM)回归模型,以模糊粒子参数为输入向量对钢坯平均拉速进行回归预测,得到下一根钢坯的平均拉速预测值。综合考虑钢坯截面积、钢坯平均拉速、定尺长度、下一根钢坯平均拉速预测值等影响因素,建立了极限学习机(ELM)神经网络预报模型,实现了钢坯定重预报。 相似文献
14.
提出一种基于多尺度变异粒子群优化(MSPSO)算法和多核最小二乘支持向量机(MK-LSSVM)的预测新方法用于滚动轴承寿命预测。提取小波包相对能量特征对轴承性能衰退予以描述,提出MSPSO算法对MK-LSSVM模型参数进行优化选取,构造融合多核函数的LSSVM模型实现轴承寿命估计。MK-LSSVM中多核函数的引入克服了单核LSSVM对核函数类型强依赖性的弱点,MSPSO算法中种群全局大尺度均匀变异与个体局部邻域小尺度变异搜索联合策略的提出在增强种群多样性的同时保证了粒子群局部精确搜索的能力。利用实测滚动轴承振动数据分析,验证了所提MSPSO算法在模型参数优化及优化MKLSSVM模型在滚动轴承寿命预测应用中的有效性。 相似文献
15.
16.
17.
18.
应力强度因子是表征材料断裂的重要参量,与应力大小,裂纹的形状和裂纹长度有关。对应力强度因子进行分析,基于最小二乘支持向量机原理,结合粒子群优化,建立以应力大小和裂纹长度作为输入值,应力强度因子为输出值的模型,从而对应力强度因子进行分析和预测。模型预测值与理论值进行分析比较,结果显示,基于最小二乘支持向量机结合粒子群优化算法建立的数学模型,模型拟合优度为0.994 9,可通过应力大小和裂纹长度预测应力强度因子,预测值与精确值的相对最大误差为0.186 4,可证明该模型的适用性与精确性。 相似文献
19.
为解决供水系统调度所需混沌时用水量高精度预测等问题,将最小二乘支持向量机(LSSVM)组合预测模型应用到城市时用水量预测中。在分析不同嵌入维数和预测方法对模型预测精度影响程度的基础上,提出了基于多嵌入维数的LSSVM组合预测模型。采用互信息法和G-P方法求取多个嵌入维数,并建立了不同相空间模型,通过LSSVM算法对上述多个预测模型进行了组合预测,既综合了各不同嵌入维数各预测方法下的信息,又对单一模型下的预测偏差进行了融合,以有效地提高预测精度;最后在某地进行了时用水量序列的仿真实验。研究结果表明,该模型预测精度平均误差小于2%,明显优于各单一模型的预测结果,证实了该组合模型的有效性和实用性。 相似文献
20.
基于粒子群优化的VB-LSSVM算法研究辛烷值预测建模 总被引:2,自引:3,他引:2
针对现有红外线分析仪表无法实现阶段在线检测车用汽油调合中,MMT抗爆剂对辛烷值的影响问题,考虑到样本数据较少的因素,提出一种基于粒子群优化算法的矢量基最小二乘支持向量机方法,首先以粒子群优化的方法来选取最小二乘支持向量机的模型参数,然后用矢量基判据选择支持向量,使最小二乘支持向量机的解具有稀疏性.该方法不但克服了常用的交叉验证法的耗时与盲目性问题,发挥了最小二乘支持向量机的小样本学习和计算简单的特点,而且提高了最小二乘支持向量机模型的泛化能力,将其应用于汽油调合系统中研究法辛烷值的预测,仿真结果表明,该方法是可行且有效的. 相似文献