首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 139 毫秒
1.
李淑霞 《福建电脑》2013,29(3):99-100
本文对路径规划中比较常见的A*搜索算法进行研究,对几种基于A*搜索算法的路径规划方法如A*单向搜索、A*双向搜索及A*二次搜索进行讨论,并分析其优缺点,同时提出两个有待解决的问题。  相似文献   

2.
基于改进A*算法机器人路径规划研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对移动机器人全局路径规划问题提出一种改进A*算法。首先建立栅格地图,基于传统A*算法,进行邻域扩展,将传统8邻域扩展到24邻域,使路径方向具有更多选择,减少不必要的转折点。优化改进A*算法的启发式函数,不再采用单一的曼哈顿距离或者欧几里得距离,将其进行融合改进,剔除路径中冗余节点和多余转折点。最后将全局路径与动态窗口法相结合,结合各自的优点,充分考虑到机器人全局最优路径的同时能安全避开障碍物,得到一条平滑轨迹。各个算法进行验证之后采用ROS平台对系统进行仿真分析,实验结果表明,改进后算法具有更优秀的路径规划能力。  相似文献   

3.
研究了复杂未知环境下移动机器人的路径规划问题,旨在解决当机器人具有相当大的可视半径时,传统的滚动规划算法在解决路径规划问题时效率不高的问题。提出了一种局部规划中采用改进的A*算法的滚动规划算法。该算法引入一种二叉堆数据结构来存储局部规划待考察的节点,通过减少局部寻优中比较的次数来提高搜索的速度。仿真结果表明,该算法在解决这类路径规划问题时,能显著提高路径规划的效率,对其他的路径规划算法也有重要的借鉴意义。  相似文献   

4.
基于滚动窗口算法的机器人路径规划应用研究   总被引:6,自引:0,他引:6  
孙斌  韩大鹏  韦庆 《计算机仿真》2006,23(6):159-162
研究了未知环境下,特别是动态环境下,移动机器人基于滚动窗口的路径规划避障策略。着重分析了如何利用探测的有限信息进行场景分析和场景预测的过程,阐述了如何在保证安全性的前提下机器人利用启发信息进行局部最优规划,结合窗口滚动和反馈机制实现机器人的全局规划。该算法以机器人为中心,具有很强的可操作性和实际应用价值。仿真结果证明了本算法的实时性和有效性。  相似文献   

5.
在面积比较大的或划分精细的栅格地图中进行自动导引车(AGV)行驶路径规划时,经典的A*算法搜索得到的路径往往冗余节点和转折点较多,搜索路径时间较长.为了提高A*算法的实时性,提出了一种基于双向搜索路径的A*算法.首先,对于A*算法的启发函数引入父节点和Chebyshev Distance,改进启发函数;其次,引入双向路径搜索的动态窗口,同时从路径的起点和终点搜索路径,得到一条初始路径,并论述了动态窗口的大小对于双向搜索路径的影响;最后,依据关键点搜索原理,剔除初始路径中存在的冗余节点,得到最终的搜索路径.实验证明,相较于单向改进A*算法和改进人工势场算法,双向搜索改进A*算法搜索路径耗费时间分别降低了22.9%和78.4%,路径包含节点数分别降低了82.2%和99.5%,证明了算法的有效性.  相似文献   

6.
在面积比较大的或划分精细的栅格地图中进行自动导引车(AGV)行驶路径规划时,经典的A*算法搜索得到的路径往往冗余节点和转折点较多,搜索路径时间较长.为了提高A*算法的实时性,提出了一种基于双向搜索路径的A*算法.首先,对于A*算法的启发函数引入父节点和Chebyshev Distance,改进启发函数;其次,引入双向路径搜索的动态窗口,同时从路径的起点和终点搜索路径,得到一条初始路径,并论述了动态窗口的大小对于双向搜索路径的影响;最后,依据关键点搜索原理,剔除初始路径中存在的冗余节点,得到最终的搜索路径.实验证明,相较于单向改进A*算法和改进人工势场算法,双向搜索改进A*算法搜索路径耗费时间分别降低了22.9%和78.4%,路径包含节点数分别降低了82.2%和99.5%,证明了算法的有效性.  相似文献   

7.
针对移动机器人在复杂环境下(包含静态和动态环境)的路径规划效率低的问题,提出了一种改进的A*算法与动态窗口法相结合的混合算法。针对传统A*算法安全性不足的问题,采用障碍规避策略,优化节点的选择方式,增加路径的安全性;针对转折点多的问题,采用递归二分法优化策略,去除冗余节点,减少转弯次数;针对静态环境下路径平滑性不足的问题,采用动态内切圆平滑策略将折线角优化成弧度角,以增加路径的平滑性。对于传统动态窗口法的目标点附近存在障碍物时规划效果不好和容易在凹型槽类障碍物中陷入局部最优的问题,在原有的评价函数中引入了距离偏差和轨迹偏差。最后,对所提的改进A*算法和混合算法分别在静态和动态环境下与其他算法进行仿真比较。从结果可以看出,与传统混合算法相比,临时障碍环境下,路径长度和运行时间分别缩短了13.2%和65.8%;移动障碍环境下,路径长度和运行时间分别缩短了13.9%和44.9%,所提的算法提高了在复杂环境中规划路径的效率。  相似文献   

8.
利用机器人行为动力学与滚动窗口路径规划   总被引:2,自引:0,他引:2       下载免费PDF全文
针对存在静态障碍物的未知环境下移动机器人路径规划问题,提出运用行为动力学与滚动窗口相结合进行路径规划的方法。首先根据所获得的窗口(局部环境)信息,采用启发式函数进行局部子目标优化选择;然后将路径规划问题即导航行为分解为趋于目标行为和避障行为,并对这两种行为分别建立了行为状态和行为模式动力学模型;在此基础上,以窗口为单位,利用导航行为动力学模型进行在线自主路径规划;将一系列窗口中的规划轨迹按照连续性条件首尾相接,最终完成了一条全局规划任务。该方法原理简单,计算量小,规划路径光滑,具有较强的实际应用价值。通过计算机实例仿真验证了该方法的有效性和适应性。  相似文献   

9.
简单介绍了基于图搜索A*算法原理,把该算法与常见的估价函数:曼哈顿距离、对角线距离、欧几里德距离等结合,将其应用于肺部图像的边缘跟踪中,较系统地总结出选择估价函数的原则及其各优缺点,这将更有效地完成边缘跟踪的过程。  相似文献   

10.
A*算法通过启发信息指引搜索方向,被广泛应用于移动机器人的路径规划,但其规划出的搜索路径存在冗余节点且与障碍物相近,无法满足动态避障需求。对标准A*算法进行改进,设计安全A*算法并融合动态窗口法进行路径规划。定义安全距离因子引入A*算法的启发函数中,提高算法规划路径的安全性,同时采用平面结构法对算法规划得到的路径进行优化,根据相邻节点与障碍物之间的位置关系判断该相邻节点间是否存在障碍物,由此减少路径拐点数,提高路径平滑度。由于当移动机器人处于未知环境时,仅靠A*算法不能避开障碍物到达目标点,因此借助动态窗口法的局部避障功能。通过安全A*算法规划全局最优路径节点坐标,设计融合子函数改进动态窗口法的评价函数,解决动态窗口法易陷入局部最优的问题。实验结果表明,在复杂环境中,该方法通过融合安全A*算法和动态窗口法,能够确保在安全路径基础上实时随机避障,使机器人安全到达终点。  相似文献   

11.
针对时效A*算法为了大幅减少算法时间,导致路径规划长度增加和路径锯齿过多的问题,提出一种改进的双向时效A*算法,该方法将从起点和终点同时运行时效A*算法寻找路径,并采用多近邻栅格距离计算方案;同时,根据不同环境地图对传统A*算法、时效A*算法和双向时效A*算法运行结果进行对比研究及分析;最后,制定算法时间、路径长度两个指标来评判算法的优劣。实验结果显示,双向时效A*算法相对于传统A*算法,算法时间最大减少76.8%,相对于时效A*算法,时间最大减少55.4%,并解决了时效A*算法规划路径距离增加、路径不够平滑的问题。  相似文献   

12.
一种基于改进Theta *的机器人路径规划算法   总被引:2,自引:0,他引:2       下载免费PDF全文
对Theta *算法进行改进,并用于解决机器人路径规划问题.首先,将障碍物对机器人产生的斥力作为一种惩罚函数加入到启发函数中,并合理地选择惩罚函数权重以确定启发函数.在此基础上,改进A *算法的变种——Theta *算法,提出对路径进行平滑处理的PS_Theta *算法.最后在二维仿真环境中进行验证及数据统计,并推广至三维复杂环境中,实验结果证明了算法的合理性与有效性  相似文献   

13.
为了提升搜索式路径规划算法在C字型障碍中的探索效率,提出了一种基于对抗生成网络的A*算法。首先使用训练更为稳定的梯度惩罚Wasserstein对抗生成网络(WGAN-GP)生成存在可行路径的感兴趣区域;然后使用A*算法优先探索该区域,使得路径规划能够被有效引导;最终形成一条连续的路径。经过实验仿真验证,其相较于传统A*算法节约了31%的规划时间、减少了22.84%的探索空间,提升了路径规划算法的效率。实验结果表明,改进的A*算法具有较高的探索效率,能够更好地应用于机器人路径规划中。  相似文献   

14.
目前越来越多的领域使用移动机器人代替人工工作。路径规划就是移动机器人正常工作的保障之一,A*算法就是一种路径规划算法。针对A*算法生成路径拐点多、路径较长的问题,提出了一种基于将搜索邻域扩大至5×5的随机数去除节点的改进A*算法。首先,将3×3的搜索邻域扩大至5×5,从而减少拐点个数,改善转折角度,去除冗余点;其次,引入一种随机数去除冗余节点的方法,该方法是通过随机连接节点判定其是否穿过障碍物来去除冗余节点,从而进一步去除A*算法路径列表的冗余点;最后,将改进的算法与A*算法在30×30的栅格地图中进行仿真比较,实验结果表明,改进的算法在多组路径中都有很好的优化效果,路径长度、运行时长和访问节点数分别平均减少了4.46%、24.83%和39.93%,从而有效改善A*算法生成拐点多、路径较长的问题。  相似文献   

15.
在机器人路径规划中,A*算法搜索路径时存在大量冗余节点,随着任务量增加,其搜索效率也会急剧下降,因此无法适应大规模任务下的路径规划。为此提出一种改进时间窗的有界次优A*算法用于求解大规模自动导引车(automatic guided vehicle,AGV)路径规划问题。算法使用时间启发式,并在搜索过程中采用时空搜索,规划无冲突的最优或次优路径。算法主要进行了三处改进:采用时间启发式,缩短了路径时间;采用动态时间窗算法,避免多次路径规划;优化了聚焦搜索算子,降低负反馈。通过MATLAB实验结果证明改进后的算法在进行多机器人路径规划时,能快速有效地规划出无冲突的平滑次优路径,搜索效率高,稳定性强。  相似文献   

16.
基于禁忌搜索的启发式任务路径规划算法   总被引:3,自引:1,他引:3  
夏洁  高金源  余舟毅 《控制与决策》2002,17(Z1):773-776
基于启发式搜索和禁忌搜索技术,提出一种用于解决有限资源、不同重要性要求的任务路径规划问题的有效算法,通过对不同重要程度的任务进行分层调度,得到较为满意的决策结果.该算法具有搜索空间小、求解速度快的优点.仿真结果验证了算法的有效性.  相似文献   

17.
针对单一智能优化算法求解机器人路径规划时易陷入局部误区的问题,提出改进粒子群优化算法(GB_PSO)用于机器人路径规划.该算法以粒子群优化算法(particle swarm optimization,PSO)为主体,由于遗传算法(genetic algorithm,GA)和细菌觅食算法(bacterial foraging optimization algorithm,BFO)更新策略所受环境影响的不同,拟合两种环境参数;然后计算粒子与不同环境参数之间的相关性将粒子群划分为两类,分别通过GA的选择、交叉、变异算子和BFO的趋化操作并行加强局部优化;最后通过改进的粒子群更新公式对粒子进行更新,实现机器人全局和局部路径的优化.实验结果表明,改进粒子群优化算法进行路径规划提高了局部和整体的搜索能力,路径规划速度快且路径距离短,同时具备更强的鲁棒性.  相似文献   

18.
莫栋成  刘国栋 《计算机应用》2013,33(8):2289-2292
针对当组态空间内存在大量的窄道时,快速搜索随机树算法(RRT)难以取得连通路径的问题,提出了一种改进的RRT-Connect算法。该算法利用改进的桥梁检测算法来识别和采样窄道,使得路径规划在窄道内能轻易取得连通性;同时将RRT-Connect算法与任意时间算法相结合,显著地减少了RRT-Connect算法的移动代价。每个算法分别运行100次,与RRT-Connect算法相比,改进后的算法成功次数由34提高到93,规划时间由9.3s减少到4.2s。双足机器人的仿真实验结果表明,该算法能在窄道内取得优化路径,同时可以有效地提高路径规划的效率。  相似文献   

19.
针对跳点搜索(jump point search,JPS)路径规划算法在大尺度复杂场景下存在内存资源消耗较大、路径结果平滑度较低且路径过于靠近障碍物等问题,提出融合安全势场等级函数与优化Floyd算法的改进JPS算法。首先建立了安全等级函数对栅格地图中的栅格状态进行重新赋值构建安全等级地图;然后改进了启发式函数,引入目标与主方向两项偏置函数项结合安全等级函数项,进一步减少对称性搜索带来的时间消耗,改善了所规划路径的安全程度。其次通过添加二次平滑算法流程优化了Floyd算法;最后结合B-spline样条插值法,进一步提高了改进算法所规划路径的平滑程度。仿真实验验证了改进优化算法在内存资源消耗、路径长度、路径平滑程度以及路径安全程度都有显著提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号