首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this investigation, diamond thin films with grain size ranging from 50 nm to 1 µm deposited using hot filament chemical vapor deposition (HFCVD) have been analyzed by elastic recoil detection analysis (ERDA) for determining hydrogen concentration. Hydrogen concentration in diamond thin films increases with decreasing grain size. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) results showed that part of this hydrogen is bonded to carbon forming C–H bonding. Raman spectra also indicated the increase of non diamond phase with the decrease in crystallite size. Incorporation of hydrogen in the samples and increase of hydrogen content in nanocrystalline sample are discussed. Large separation between filament and substrate used for the synthesis of nanocrystalline film helped to understand the large incorporation of hydrogen in nanocrystalline diamond films during growth. The study addresses the hydrogen trapping in different samples and higher hydrogen concentration in nanocrystallites by considering the synthesis conditions, growth mechanisms for different grain sized diamond films and from the quality of CVD diamond films.  相似文献   

2.
A thermal oxidation process of diamond films grown by chemical vapor deposition (CVD) has been studied. The oxidation was realized via heating of the CVD films in air. Pristine and oxidized CVD diamond films were analyzed with Raman spectroscopy and scanning electron microscopy (SEM) techniques. Raman spectroscopy revealed substantial changes in the polycrystalline diamond film composition induced by oxidation. A selective oxidation of disordered carbon and small size diamond crystallites was obtained at appropriate temperatures. A model explaining the formation and oxidation of the CVD diamond films containing the micrometer single diamond cores surrounded by the nanocrystalline diamond and disordered carbon has been proposed on the basis of the obtained results.  相似文献   

3.
The mechanical and frictional properties of hydrogen- and oxygen-terminated nanocrystalline diamond films (NCD) grown by hot-filament chemical vapor deposition (HFCVD) have been investigated in the present work.The structure and morphology of the NCD films have been characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman-effect spectroscopy. In addition, X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) have been used to investigate the surface chemical groups on the NCD surface. Mechanical and frictional properties are determined using atomic force microscopy (AFM), nano-indentation, nano-scratching and micro-tribometer. The friction behavior of these films in the load range of 25 to 200 mN under reciprocating sliding conditions, using steel counter-body material has been thoroughly studied.It is noted that these films are highly crystalline with nanometer size grains and contain a very high fraction of sp3 carbon bonds. They exhibit high hardness and high elastic modulus. The friction coefficient of the film is lower under unidirectional scratch with diamond indenter than the friction coefficient under low load reciprocating sliding against steel ball. Transfer of the film from the counter-body, oxidation of transfer film and mixing of transfer film with carbonaceous layer on the worn surfaces are responsible for such behavior. Although, the friction responses of H-terminated and O-terminated films are similar under unidirectional scratch with diamond indenter, the friction coefficient of O-terminated film is always higher than the friction coefficient of H-terminated film under reciprocating sliding condition against steel counter-body material.  相似文献   

4.
Nanocrystalline diamond films were deposited on Co-cemented tungsten carbides using bias-enhanced hot filament CVD system with a mixture of acetone, H2 and Ar as the reactant gas. The effect of Ar concentration on the grain size of diamond films and diamond orientation was investigated. Nanocrystalline diamond films were characterized with field emission scan electron microscopy (FE-SEM), Atomic force microscopy (AFM), Raman spectroscopy and X-ray diffraction spectroscopy (XRD). Rockwell C indentation tests were conducted to evaluate the adhesion between diamond films and the substrates. The results demonstrated that when the Ar concentration was 90%, the diamond films exhibited rounded fine grains with an average grain size of approximately 60–80 nm. The Raman spectra showed broadened carbon peaks at 1350 cm 1 and 1580 cm 1 assigned to D and G bands and an intense broad Raman band near 1140 cm 1 attributed to trans-polyacetylene, which confirmed the presence of the nanocrystalline diamond phase. The full width at half maximum of the <111> diamond peak (0.8°) was far broader than that of conventional diamond film (0.28°–0.3°). The Ra and RMS surface roughness of the nanocrystalline diamond film were measured to be approximately 202 nm and 280 nm with 4 mm scanning length, respectively. The Ar concentration in the reactant gases played an important role in the control of grain size and surface roughness of the diamond films. Nanocrystalline diamond-coated cemented tungsten carbides with very smooth surface have excellent characteristics, which made them a promising material for the development of high performance cutting tools and wear resistance components.  相似文献   

5.
Smooth nanocrystalline diamond thin films with rms surface roughness of ∼17 nm were grown on silicon substrates at 600°C using biased enhanced growth (BEG) in microwave plasma chemical vapor deposition (MPCVD). The evidence of nanocrystallinity, smoothness and purity was obtained by characterizing the samples with a combination of Raman spectroscopy, X-ray diffraction (XRD), atomic force microscopy and Auger electron spectroscopy. The Raman spectra of the films exhibit an intense band near 1150 cm−1 along with graphitic bands. The former Raman band indicates the presence of nanocrystalline diamond. XRD patterns of the films show broad peaks corresponding to inter-planar spacing of (111) and (220) planes of cubic diamond supporting the Raman results. Auger line shapes closely match with the line shape of diamond suggesting high concentration of sp3 carbon on the surfaces of the films. The growth of dominantly sp3 carbon by BEG in the MPCVD system at the conditions used in the present work can be explained by the subsurface implantation mechanism while considering some additional effects from the high concentration of atomic hydrogen in the system.  相似文献   

6.
We compare structural and optical properties of microcrystalline and nanocrystalline diamond (MCD and NCD, respectively) films grown on mirror polished Si(100) substrates by microwave plasma chemical vapor deposition. The films were characterized by SEM, Raman spectroscopy, XRD, and AFM. Optical properties were obtained from transmittance and reflectance measurements of the samples in the wavelength range of 200–2000 nm. Raman spectrum of the MCD film exhibits a strong and sharp peak near 1335 cm−1, an unambiguous signature of cubic crystalline diamond with weak non-diamond carbon bands. Along with broad non-diamond carbon bands, Raman spectra of NCD films show features near 1140 cm−1, the intensity of which is significantly higher in the film grown at 600°C compared to the NCD film grown at higher temperature. The Raman feature near 1140 cm−1 is related to the calculated phonon density of states of diamond and has been assigned to nanocrystalline or amorphous phase of diamond. XRD patterns of the MCD film show sharp peaks and NCD films show broad features, corresponding to cubic diamond. The rms surface roughness of the films was observed to be approximately 60 nm for MCD film that reduced substantially to 17 and 34 nm in the NCD films grown at 600 and 700°C, respectively. Tauc's optical gap for the diamond film is found to be approximately 5.5 eV. NCD grown at 700°C has a high optical absorption coefficient in the whole spectral region and the NCD film grown at 600°C shows very high transmittance (∼78%) in the near IR region, which is close to that of diamond. This indicates that the NCD film grown at 600°C has the potential for applications as optical windows since its surface roughness is significantly low as compared to the MCD film.  相似文献   

7.
A hot filament chemical vapor deposition process based on hydrogen etching of graphite has been developed to synthesize diamond and graphitic carbon nanostructures. Well-aligned diamond and graphitic carbon nanostructured thin films have been synthesized simultaneously on differently pretreated silicon substrates in a pure hydrogen plasma. Graphitic nanocones, diamond nanocones and carbon nanotubes were selectively grown on uncoated, diamond and nickel pre-coated silicon substrates, respectively, in a single deposition process. The nanocones are solid cones with submicron scale roots and nanometer-size sharp tips. The nanotubes are hollow tubes with outer diameter of approximately 50 nm. The orientation of the well-aligned carbon nanostructures depends on the direction of the electric field at the samples surface. Nucleation and growth of diamond on the nanocones were further investigated under similar conditions without plasma. Diamond nanocomposite films have been obtained by depositing a nanocrystalline diamond film on the layer of diamond nanocones.  相似文献   

8.
A composite material, made of carbon nanotubes (CNTs) partially embedded in a nanocrystalline diamond film was produced. The diamond film was first decorated with palladium or nickel nanoparticles. An array of nanopores was drilled in the film in a hot filament CVD (HFCVD) reactor thanks to the anisotropic etching that takes place under the nanoparticles. During this etching process, the metallic particles penetrate the diamond film to a controlled depth, thus remaining at the bottom of the nanopores. The buried nanoparticles remain catalytically active and are used to grow a multiwall carbon nanotube forest using HFCVD in the same reactor without breaking the vacuum. The quality of the CNTs was assessed by scanning electron microscopy and Raman spectroscopy. The interface between the carbon nanotubes and the diamond was characterized by ultrasonication, lateral force microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. As a result of these characterizations, we demonstrate that the buried carbon nanotubes exhibit higher mechanical stability and improved electrical behavior compared to CNTs directly grown on the diamond surface.  相似文献   

9.
In this study, the microstructural, mechanical, adhesion, and hemocompatibility properties of nanocrystalline diamond coatings were examined. Microwave plasma chemical vapor deposition (MPCVD) was used to deposit nanocrystalline diamond coatings on silicon (100) substrates. The coating surface consisted of faceted nodules, which exhibited a relatively wide size distribution and an average size of 60 nm. High-resolution transmission electron microscopy demonstrated that these crystals were made up of 2–4 nm rectangular crystallites. Raman spectroscopy and electron diffraction revealed that the coating contained both crystalline and amorphous phases. The microscratch adhesion study demonstrated good adhesion between the coating and the underlying substrate. Scanning electron microscopy and energy dispersive X-ray analysis revealed no crystal, fibrin, protein, or platelet aggregation on the surface of the platelet rich plasma-exposed nanocrystalline diamond coating. This study suggests that nanocrystalline diamond is a promising coating for use in cardiovascular medical devices.  相似文献   

10.
The structural and electronic properties of nanocrystalline diamond films synthesized by a modified hot-filament chemical vapour deposition process were investigated by both bulk- and surface-sensitive techniques. Diffraction and microscopy data show the films to consist of diamond grains with an average crystallite size of about 10–15 nm and a root-mean-square roughness of similar size. Carbon core-level excitations in transmission electron energy-loss spectroscopy reveal an sp2 content below 5%. The low energy loss spectra are quite similar to that of diamond crystal. The high sp3 content in the films was also confirmed by C 1s photoelectron plasmon energy loss features in X-ray photoemission experiments and by X-ray excited Auger-electron spectroscopy. We find that the hydrogen covered diamond surface gets contaminated after storage for several months under ambient conditions. Heating up to 500°C in vacuo is required to desorb the adsorbate layer.  相似文献   

11.
《Diamond and Related Materials》2000,9(9-10):1703-1707
A polycrystalline diamond film grown by hot filament CVD was ion-milled and thinned to the diamond/silicon-substrate interface and the structures formed during the initial stages of diamond nucleation were studied by high resolution transmission electron microscopy (HRTEM). At the interface, isolated polycrystalline islands (15–35 nm) consisting primarily of mixed phase β-SiC and nanocrystalline diamond could be observed. The β-SiC phase occurred mainly as isolated nano-sized domains with no evidence of a larger micron-scale coalescence. In addition to co-existing with β-SiC in the polycrystalline islands, nanocrystalline diamond was also observed to nucleate in the amorphous carbon matrix. The density of the nanocrystalline diamond in the amorphous carbon matrix was observed to be at least an order of magnitude higher than that in the polycrystalline β-SiC phase. The total nanocrystalline diamond nucleation density was found to be several orders of magnitude higher than the growth density of the micron-sized diamond crystallites that ultimately evolved from the interface at longer growth times.  相似文献   

12.
In this work, we report on adherent diamond films with thickness of up to 4.5 μm grown on polycrystalline alumina substrates. Prior to deposition, alumina substrates were ultrasonically abraded with mixed poly-disperse slurry that allows high nucleation density of values up to ∼5×1010 particles/cm2. It was estimated that the minimal film thickness achieved for continuous films was ∼320 nm, obtained after a deposition time of 15 min with diamond particles density (DPD) of ∼4×109 particles/cm2. Continuous adherent diamond films with high DPD (∼109 particles/cm2) were obtained also on sapphire surface after abrasion with mixed slurry and 15 min of deposition. However, after longer deposition time, diamond films peeled off from the substrates during cooling.The poor adhesion between the diamond and sapphire is attributed to the weak interface interaction between the film and the substrate and to difference in coefficient of thermal expansion. On the other hand, it is suggested that the reason for good adhesion between diamond film and alumina substrate is that high carbon diffusivity onto alumina grain boundaries allows strong touch-points at the grooves of alumina grains, and this prevents the delamination of diamond film. This adhesion mechanism, promoted by sub-micron diamond grain-size, is allowed by initial high nucleation density.The surface properties, phase composition and microstructure of the diamond films deposited onto alumina were examined by electron energy loss spectroscopy (EELS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and high-resolution scanning electron microscopy (HR-SEM). The residual stress in the diamond films was evaluated by diamond Raman peak position and compared to a theoretical model with good agreement. Due to the sub-micron grain-size, the intrinsic tensile stress is high enough to partially compensate the thermal compressive stress, especially in diamond films with thickness lower than 1 μm.  相似文献   

13.
We show correlation of microscopic surface quality and morphology of nanocrystalline diamond films as a function of deposition temperature and post-growth acid treatment detected by atomic force microscopy in phase detection regime, X-ray photoelectron spectroscopy, X-ray induced Auger electron spectroscopy, Scanning Electron Microscopy, Raman spectroscopy, and the electrical conductivity of H-terminated diamond surfaces. The correlation reflects the decrease in sp2 amount and enhanced surface conductivity of the diamond surface after the chemical treatment. These results indicate that the AFM phase can detect clearly and microscopically carbon sp2 phase on facets and grain boundaries of nanocrystalline diamond films.  相似文献   

14.
Amorphous carbon (a-C) films with high contents of tetrahedral carbon bonding (sp3) were synthesized on smooth Si(100) surfaces by cathodic arc deposition. Before diamond growth, the a-C films were pretreated with a low-temperature methane-rich hydrogen plasma in a microwave plasma-enhanced chemical vapor deposition system. The evolution of the morphology and microstructure of the a-C films during the pretreatment and subsequent diamond nucleation and initial growth stages was investigated by high-resolution transmission electron microscopy (TEM). Carbon-rich clusters with a density of ∼1010 cm−2 were found on pretreated a-C film surfaces. The clusters comprised an a-C phase rich in sp3 carbon bonds with a high density of randomly oriented nanocrystallites and exhibited a high etching resistance to hydrogen plasma. Selected area diffraction patterns and associated dark-field TEM images of the residual clusters revealed diamond fingerprints in the nanocrystallites, which played the role of diamond nucleation sites. The presence of non-diamond fingerprints indicated the formation of Si–C-rich species at C/Si interfaces. The predominantly spherulitic growth of the clusters without apparent changes in density yielded numerous high surface free energy diamond nucleation sites. The rapid evolution of crystallographic facets in the clusters observed under diamond growth conditions suggested that the enhancement of diamond nucleation and growth resulted from the existing nanocrystallites and the crystallization of the a-C phase caused by the stabilization of sp3 carbon bonds by atomic hydrogen. The significant increase of the diamond nucleation density and growth is interpreted in terms of a simple three-step process which is in accord with the experimental observations.  相似文献   

15.
Different grades of CVD diamond films were prepared by 100 kW DC Arc Plasma Jet system. The films were characterized using optical microscope (OM), high-resolution transmission electron microscopy (HRTEM), electron energy-loss spectroscopy (EELS), and Raman spectroscopy. The results show that dark feature mainly is inclusions in CVD diamond films, the concentration are amorphous carbon and nitrogen. As for transparent optical grade diamond film, it has very high IR transparency and high thermal conductivity. The appearance of dark feature degraded the quality of CVD diamond film, apparently influencing IR transparency and thermal conductivity. But even in optical grade diamond film, there are very strong absorption features in the 7–9 μm region, this will limit the practical applications of diamond films grown by Plasma Jet as IR windows for CO2 lasers.  相似文献   

16.
Thin films of pure and Ti doped Mg0.95Mn0.05Fe2O4 deposited using pulsed laser deposition technique, have been characterized using X-ray diffraction, Raman spectroscopy, dc magnetization, atomic force microscopy, magnetic force microscopy and near edge X-ray absorption fine structure spectroscopy measurements. X-ray diffraction and Raman spectroscopy measurements indicate that both the films have single phase and the polycrystalline behavior with FCC structure. The grain size calculated using XRD data was 18 and 27 nm for pure and Ti doped films, respectively. Magnetic measurements reflect that pure film has superparamagnetic behavior while Ti doped film has soft ferrimagnetic behavior at room temperature. Atomic force microscopy measurements indicate that both the films are nanocrystalline in nature. Near edge X-ray absorption fine structure spectroscopy measurements clearly infer that Fe ions are in mixed valence state.  相似文献   

17.
Amorphous carbon (a-C) films, 20 nm thick, were deposited by sputtering on (001) Si substrates. A negative bias voltage was applied to the substrate during deposition to induce Ar+ ion bombardment with an energy of ∼230 eV. The film microstructure was investigated by conventional transmission electron microscopy as well as high-resolution electron microscopy. The films consist of an amorphous carbon matrix and crystallites with a platelet form. The crystallites are energetically metastable and easily degrade under electron beam irradiation. In addition, they are usually oriented along their sixfold or threefold axes, exhibiting lattice parameters larger than those of graphite and diamond. X-ray reflectivity density measurements and high-resolution electron microscopy observations indicate that these crystallites consist of packed complex carbon clusters. X-ray diffraction measurements in rocking curve geometry support the existence of oriented crystallites with interplanar spacings corresponding to those observed by transmission electron microscopy.  相似文献   

18.
It has long been known that by slightly altering the deposition conditions for diamond in plasma-enhanced chemical vapor deposition (PECVD), a transition from a microcrystalline to a nanocrystalline diamond morphology can be affected. The method of this transition, however, is not clear. This work investigates that transition by using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Raman spectroscopy. These experiments show that far from being a continuous transition, there is competitive growth between microcrystalline and nanocrystalline diamonds. Additionally, this work confirms the interpretation that certain peaks in the Raman spectrum previously attributed to “nanocrystalline diamond” are indeed due to the presence of hydrogen at the grain boundaries. For ultrananocrystalline diamond (UNCD) films, we verify that none of the spectral features observed using visible Raman spectroscopy can be attributed to sp3-bonded carbon, although the sample is composed of ∼95% sp3-bonded carbon. Thus, the Raman signal in UNCD can be considered to be solely due to the disordered sp2-bonded carbon at the grain boundaries.  相似文献   

19.
We present investigation of nanocrystalline diamond films deposited in a wide temperature range. The nanocrystalline diamond films were grown on silicon and glass substrates from hydrogen based gas mixture (methane and hydrogen) by microwave plasma CVD process. Film composition, nano-grain size and surface morphology were investigated by Raman spectroscopy and scanning electron microscopy. All samples showed diamond characteristic line centred at 1332 cm 1 in the Raman spectrum. Nanocrystalline diamond layers revealed high surface flatness (under 10 nm) with crystal size below 60 nm. Surface morphology of grown films was well homogeneous over glass substrates due to used mechanical seeding procedure. Very thin films (40 nm) were successfully grown on glass slides (i.e. standard size 1 × 3″). An increase in delay time was observed when the substrate temperature was decreased. A possible origin for this behaviour was discussed.  相似文献   

20.
Diamond films were used as substrates for cubic boron nitride (c-BN) thin film deposition. The c-BN films were deposited by ion beam assisted deposition (IBAD) using a mixture of nitrogen and argon ions on diamond films. The diamond films exhibiting different values of surface roughness ranging from 16 to 200 nm (in Rrms) were deposited on Si substrates by plasma enhanced chemical vapor deposition. The microstructure of these c-BN films has been studied using in situ reflexion electron energy loss spectroscopy analyses at different primary energy values, Fourier transform infrared spectroscopy and high resolution transmission microscopy. The fraction of cubic phase in the c-BN films was depending on the roughness of the diamond surface. It was optimized in the case of the smooth surface presenting no particular geometrical effect for the incoming energetic nitrogen and argon ions during the deposition. The films showed a nanocrystalline cubic structure with columnar grains while the near surface region was sp2 bonded. The films exhibit the commonly observed layered structure of c-BN films, that is, a well textured c-BN volume lying on a h-BN basal layer with the (00.2) planes perpendicular to the substrate. The formation mechanism of c-BN films by IBAD, still involving a h-BN basal sublayer, does not depend on the substrate nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号