首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Floorplanning is a critical phase in physical design of VLSI circuits. The stochastic optimization method is widely used to handle this NP-hard problem. The key to the floorplanning algorithm based on stochastic optimization is to encode the floorplan structure properly. In this paper, corner block list (CBL)-a new efficient topological representation for non-slicing floorplan-is proposed with applications to VLSI floorplan. Given a corner block list, it takes only linear time to construct the floorplan. In floorplanning of typical VLSI design, some blocks are required to satisfy some constraints in the final packing. Boundary constraint is one kind of those constraints to pack some blocks along the pre-specified boundaries of the final chip so that the blocks are easier to be connected to certain I/O pads. We implement the boundary constraint algorithm for general floorplan by extending CBL. Our contribution is to find the necessary and sufficient characterization of the blocks along the boundary repre  相似文献   

4.
With business ecosystems digitalizing by the force of digital innovation, the deployment of boundary resources (such as application programming interfaces: APIs) becomes a strategic option across contexts. We distinguish between boundary resources that provide access openness and those that provide resource openness, and theorize the antecedents and consequences of their deployment. Employing panel data regressions to a longitudinal cross-industry dataset, we find that the digital knowledge base of the focal firm and the existence of potential digital complementors drive boundary resource deployment. Such deployment benefits firm performance depending on the firm’s market power. From our empirical analysis, we reveal a differentiated perspective on the quality of the confined openness provided by boundary resources as well as the embeddedness of their deployment in the rationales and motivations of the associated actors in digital business ecosystems. We complement the existent theoretical framework on boundary resources and provide valuable insights to managers reflecting about deploying boundary resources in a beneficial way.  相似文献   

5.
6.
Two experiments assessed the effect of displaying a boundary on duration estimates and preference ratings for dynamic displays that were shown while users waited for the system's response. Displays were either symbolic (changing numbers) or graphic (increasing rectangles) and could contain a boundary that indicated when the interval was expected to be over. Duration estimates were similar for symbolic and graphic displays and for displays with and without a boundary. However, when the displays were encountered successively, participants assessed the graphic displays as having shorter durations than the symbolic displays. Faster rates of change in both types of displays led to increased duration estimates. Although displaying a boundary did not affect duration estimates, participants preferred displays in which a boundary was shown and preferred the graphic displays over the symbolic displays. Hence, bounded graphic displays are recommended as “wait” displays for computerized applications.  相似文献   

7.
For the boundary-controlled dynamic system obeying a parabolic differential equation with the Neumann boundary condition, the problems of following the reference motion, following the reference control, and guaranteed control (at domination of the controller resource) were solved on the basis of the N.N. Krasovskii method of extremal shift from the theory of positional differential games.  相似文献   

8.
In this article, recently proposed spectral meshless radial point interpolation (SMRPI) method is applied to the two-dimensional diffusion equation with a mixed group of Dirichlet’s and Neumann’s and non-classical boundary conditions. The present method is based on meshless methods and benefits from spectral collocation ideas. The point interpolation method with the help of radial basis functions is proposed to construct shape functions which have Kronecker delta function property. Evaluation of high-order derivatives is possible by constructing and using operational matrices. The computational cost of the method is modest due to using strong form equation and collocation approach. A comparison study of the efficiency and accuracy of the present method and other meshless methods is given by applying on mentioned diffusion equation. Stability and convergence of this meshless approach are discussed and theoretically proven. Convergence studies in the numerical examples show that SMRPI method possesses excellent rates of convergence.  相似文献   

9.
10.
This work proposes several approaches to accelerate the solid–fluid interaction through the use of the Immersed Boundary method on multicore and GPU architectures. Different optimizations on both architectures have been proposed, focusing on memory management and workload mapping. We have chosen two different test scenarios which consist of single-solid and multiple-solid simulations. The performance analysis has been carried out on an intensive set of test cases to analyze the proposed optimizations using multiple CPUs (2) and GPUs (4). An effective performance is obtained for single-solid executions using one CPU (Intel Xeon E5520) achieving a speedup peak equal to 5.5. It is reached a higher benefit on multiple solids obtaining a top speedup of approximately 5.9 and 9 using one CPU (8 cores) and two CPUs (16 cores), respectively. On GPU (Kepler K20c) architecture, two different approaches are presented as the best alternative: one for single-solid executions and one for multiple-solid executions. The best approach obtained for one solid executions achieves a speedup of approximately 17 with respect the sequential counterpart. In contrast, for multiple-solid executions the benefit is much higher, being this type of problems much more suitable for GPU and reaching a peak speedup of 68, 115 and 162 using 1, 2 and 4 GPUs, respectively.  相似文献   

11.
12.
《Automatica》2014,50(11):2787-2798
This paper addresses the problem of feedback control design for a class of linear cascaded ordinary differential equation (ODE)–partial differential equation (PDE) systems via a boundary interconnection, where the ODE system is linear time-invariant and the PDE system is described by an Euler–Bernoulli beam (EBB) equation with variable coefficients. The objective of this paper is to design a static output feedback (SOF) controller via EBB boundary and ODE measurements such that the resulting closed-loop cascaded system is exponentially stable. The Lyapunov’s direct method is employed to derive the stabilization condition for the cascaded ODE–beam system, which is provided in terms of a set of bilinear matrix inequalities (BMIs). Furthermore, in order to compute the gain matrices of SOF controllers, a two-step procedure is presented to solve the BMI feasibility problem via the existing linear matrix inequality (LMI) optimization techniques. Finally, the numerical simulation is given to illustrate the effectiveness of the proposed design method.  相似文献   

13.
A computational study on optimal spacing of Lagrangian nodes discretizing a rigid and immobile immersed body boundary in 2D and 3D is presented in order to show how the density of the Lagrangian points affects the numerical results of the Immersed Boundary–Lattice Boltzmann Method (IB–LBM). The study is based on the implicit velocity correction-based IB–LBM proposed by Wu and Shu (2009, 2010) that allows computing the fluid–body interaction force. However, the (original) method fails for densely spaced Lagrangian points due to ill-conditioned or even singular linear systems that arise from the derivation of the method. We propose a modification that improves the solvability of the linear systems and compare the performance of both methods using several benchmark problems. The results show how the spacing of the Lagrangian points affects the numerical results, mainly the permeability of the discretized body boundary in applications to fluid flows over rigid obstacles and blood flows in arteries in 2D and 3D.  相似文献   

14.
The high frequency resistance and inductance of the 3-D complex interconnect structures can be calculated by solving an eddy current electromagnetic problem. In this paper, a model for charactering such a 3-D eddy current problem is proposed, in which the electromagnetic fields in both the conducting and non-conducting regions are described in terms of the magnetic vector potential, and a set of the indirect boundary integral equations (IBIE) is obtained. The IBIEs can be solved by boundary element method, so this method avoids discretizing the domain of the conductors. As an indirect boundary element method, it is of minimum order. It does not restrict the direction of the current in conductors, and hence it can consider the mutual impedance between two perpendicular conductors. The numerical results can well meet the analytical solution of a 2-D problem. The mutual impedance of two perpendicular conductors is also shown under the different gaps between conductors and different frequencies.  相似文献   

15.
This review examines the importance of the thermal boundary layer of the ocean to the measurement of sea surface temperature (SST) by satcllitc-bornc infrared (IR) radiometers. Attention is focused on the difference between the temperature of the top 01mm which is observed by radiometers, and the temperature found at depths between a few centimetres and one metre, which is that recorded as bulk SST by ship measurement techniques. The question addressed is whether corrections for this effect are necessary in the light of the accuracy of IR radiometers, and the demands made by the application of SST data.

A brief preview is made of the accuracy of the best presently available sensor for space observations of SST, the AVHRR, the associated atmospheric corrections and other sources of error. Current knowledge of the thermal boundary layer of the ocean is then presented in a thorough review of the scientific literature. The evidence of field observations suggests that the surface skin can be typically 0.1-0.5 degK cooler than the water a few centimetres deeper. Theoretical models of the effect are available and there is some understanding of the dependence of spatial and temporal variability of the skin effect on other environmental parameters, but there is a need for more systematic observation before prediction of the effect can confidently be achieved.

The existing and potential applications of SST in oceanography and meteorology are summarized, with emphasis on the required accuracy, in certain areas 0 2 degK being desirable. Following a survey of the likely capabilities of the next generation of spaceborne IR radiometers (notably the ATSR) it is concluded that while the inaccuracies of present systems tend to be greater than the skin effect, if future systems meet their specification then the skin temperature deviation will become a significant factor in the calibration procedure. In the light of this, the review concludes with some remarks regarding the value of further studies of the thermal skin effect.  相似文献   

16.
In early 2000,large domestic shipyards introduced shipbuilding 3D computer-aided design (CAD) to the hull production design process to define manufacturing and assembly information.The production design process accounts for most of the man-hours (M/H) of the entire design process and is closely connected to yard production because designs must take into account the production schedule of the shipyard,the current state of the dock needed to mount the ship’s block,and supply information.Therefore,many shipyards are investigating the complete automation of the production design process to reduce the M/H for designers.However,these problems are still currently unresolved,and a clear direction is needed for research on the automatic design base of manufacturing rules,batches reflecting changed building specifications,batch updates of boundary information for hull members,and management of the hull model change history to automate the production design process.In this study,a process was developed to aid production design engineers in designing a new ship’s hull block model from that of a similar ship previously built,based on AVEVA Marine.An automation system that uses the similar ship’s hull block model is proposed to reduce M/H and human errors by the production design engineer.First,scheme files holding important information were constructed in a database to automatically update hull block model modifications.Second,for batch updates,the database’s table,including building specifications and the referential integrity of a relational database were compared.In particular,this study focused on reflecting the frequent modification of building specifications and regeneration of boundary information of the adjacent panel due to changes in a specific panel.Third,the rollback function is proposed in which the database (DB) is used to return to the previously designed panels.  相似文献   

17.
18.
Using molecular dynamics simulations, the present study investigated the precise characteristics of the binary mixture of condensable gas (vapor) and non-condensable gas (NC gas) molecules creating kinetic boundary conditions (KBCs) at a gas–liquid interface in equilibrium. We counted the molecules utilizing the improved two-boundary method proposed in previous studies by Kobayashi et al. (Heat Mass Trans 52:1851–1859, 2016. doi: 10.1007/s00231-015-1700-6). In this study, we employed Ar for the vapor molecules, and Ne for the NC gas molecules. The present method allowed us to count easily the evaporating, condensing, degassing, dissolving, and reflecting molecules in order to investigate the detailed motion of the molecules, and also to evaluate the velocity distribution function of the KBCs at the interface. Our results showed that the evaporation and condensation coefficients for vapor and NC gas molecules decrease with the increase in the molar fraction of the NC gas molecules in the liquid. We also found that the KBCs can be specified as a function of the molar fraction and liquid temperature. Furthermore, we discussed the method to construct the KBCs of vapor and NC gas molecules.  相似文献   

19.
20.
U–Mo and U–Nb alloys are both extensively used in nuclear industry. γ phase in U–Mo or U–Nb alloy is a solid solution, being metastable in low temperature region. In this work, the effect of alloying on stability of grain boundary in meta-stable γ phase in U–Mo and U–Nb alloys are investigate through first-principles calculations. At first, crystal structure and elastic constants of Mo, Nb and γ-U metals are calculated and the obtain results show the mechanical unstable nature of γ phase at 0 K, no matter with GGA or GGA + U treatment, which agrees with most of the theoretical results in the literature. Furthermore, from the calculated symmetric tilt grain boundary (STGB) formation energies of Σ3[110]/(111) and Σ5[001]/(310) in Mo, Nb, and γ-U, it is found that due to the mechanical unstable character of the γ-U phase, negative GB formation energy is predicted at 0 K for Σ5[001]/(310) if the STGB model is relaxed with all degrees of freedom. Therefore, by using special quasirandom structure (SQS) method, Σ5[001]/(310) and Σ3[110]/(111) STGBs with different solute concentrations in U-rich side in U–Mo and U–Nb systems are further investigated. It is found that, when alloying with Mo or Nb, unlike Σ3[110]/(111), although the fixed-atom constraint is applied, the GB formation energy of Σ5[001]/(310) STGB is becoming negative when the solute concentration is in U-rich side. Only when the concentration of Mo or Nb is larger than 27 at.% or 30 at.%, respectively, or sufficient small, the GB formation energy is becoming positive, suggesting a cooperative effects of solute concentration, unstable character, and grain size on GB structures in γ phase. The predicted different stability of alloyed GB structures at 0 K suggest that although γ phase is metastable at low temperature, its metastability can be controlled through alloying with different solutes, or with different GBs. And grain refinement should be relatively easy in U-rich part than U-poor part of the U–Mo and U–Nb systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号