首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Fe/C微电解法处理压裂废水的研究   总被引:5,自引:0,他引:5  
首次将Fe/C微电解用于处理混凝后的压裂废水,分别考察了微电解pH值、停留时间、Fe/C体积比、铁屑粒度、氯化铵加量对Fe/C微电解的影响程度,并通过计算确定了铁屑消耗量。实验结果表明,在pH值为2,停留时间取25min,Fe/C体积比为1~1.5,铁屑粒度为60~80目,氯化铵加量为1000mg/L时,经过Fe/C微电解,压裂废水色度去除率接近100%,COD去除率可达58%,处理每方压裂废水消耗铁屑约0.28kg。  相似文献   

2.
微电解法处理染化废水的试验研究   总被引:6,自引:0,他引:6  
染化废水污染物种类多,毒性大、化学需氧量ρ(CODCr)高,且大部分是生物降解的污染物质,严重污染环境;利用铁炭在水中发生的微电解过程可有效去除染料生产废水的色度和化学需氧量ρ(CODCr),同时提高污水的后续可生化性。试验结果表明,微电解处理效果受填料组成、pH值、停留时间和混凝曝气等因素的影响;废水经过微电解处理后,ρ(CODCr)和色度分别从2000mg/L和2048下降为860mg/L和256,去除率可高达56%和75%;采用微电解-混凝法出水与采用单纯的石灰乳中和混凝沉淀法出水相比,ρ(CODCr)降低22.5%,可生化性提高18%。  相似文献   

3.
以提高电解处理工艺的效率、降低处理成本、易于实现工业化为目标,筛选出适合硝基苯废水处理的高效电极材料,考察了电解法处理模拟硝基苯废水的各种影响因素,并在此基础上对电解法降解模拟硝基苯废水的过程进行了初步探讨。研究结果表明:以铁作电极,在电极间距为5 mm,电流密度为10 mA/cm2,硫酸钠投加量为1.5 g/L,水板比为12 m-1,电解时间为30 min的条件下对硝基苯模拟废水进行电解处理,硝基苯去除率可达90%以上;在铁电极电解作用下,硝基苯的降解78%是由氧化等作用去除,22%是在电还原作用下被转化为可生化和低毒的苯胺。  相似文献   

4.
采用铁炭微电解法,以自配的染料废水和实际染料废水为研究对象,通过静态和动态实验分别研究了pH、原水质量浓度、停留时间等因素对废水色度、COD去除效果的影响.实验结果表明,处理时最佳pH为4.5,色度去除率可达50%左右;去除率随停留时间的增长而提高,停留时间为16h时,色度去除率可达95%;废水质量浓度对去除效果影响显著,600mg/L的染料废水其COD去除率最高,达到81%;各染料的去除效果各不相同,酸性染料的处理效果最好,其次依次是直接冻黄、士林黄、活性金黄、分散黄.  相似文献   

5.
合成了羟甲基磺酸钠,并对7-氨基-4-萘酚-2-磺酸的磺甲基化反应进行了研究。通过正交试验和单因素实验,确定了7-氨基-4-萘酚-2-磺酸磺甲基化反应的较佳工艺条件为:7-氨基-4-萘酚-2-磺酸与羟甲基磺酸钠摩尔比为1∶1.15,pH 6.0~6.5,温度40℃,时间3 h。产品收率可达96%,HPLC分析纯度达95%以上。产品的结构通过红外、质谱、核磁共振氢谱等进行了鉴定。  相似文献   

6.
针对含铬废水的微电解法处理在实际应用中容易发生钝化 ,处理效果会降低 ,结合微电解法的电化学本质 ,通过实验对含铬废水微电解处理的操作条件进行了优化探讨。  相似文献   

7.
采用反相高效液相色谱法分离和测定1,1′-联-2-萘酚和2-萘酚.在选定的色谱条件下,1,1′-联-2-萘酚与2-萘酚等杂质之间具有较好的分离效果.该方法具有操作简单、快速、准确度和精密度较好,对同一1,1′-联-2-萘酚和2-萘酚试样分别进行五次平行独立测定的标准偏差分别为0.60和0.46;相对标准偏差分别为0.61%和0.47%;加入法回收率分别为98.42%~102.8%和98.21%~102.0%.  相似文献   

8.
采用铁炭微电解法对印染废水进行预处理实验研究,考察了初始pH值、反应时间、铁炭加入量、曝气时间对预处理结果的影响。结果表明:反应初始pH值为3,反应时间为120min,铁炭加入量为100g.(100mL)-1,曝气时间为120min时,处理效果最好。经过铁炭预处理后的废水CODCr降到489mg.L-1,色度降到125倍,B/C值提高到0.37,为后续生化处理奠定了良好的基础。  相似文献   

9.
实验中所采用的废水组成复杂,含有大量的呋喃环类物质,废水的pH值在1.6左右,COD值为2.0×105 mg/L左右,盐的质量分数可达13%。针对水质情况,利用微电解等方法对该废水进行了预处理,并摸索了最佳工艺条件。实验结果表明,废水pH值为3、碳铁质量比1∶2、反应时间为3h、铁碳质量分数为1%时,微电解法对该呋喃环类废水处理效果较好,COD总去除率可达57%,色度去除率可达80%。  相似文献   

10.
采用静态小试方法,对COD质量浓度为1600mg/L的4-亚硝基苯酚废水进行了铁炭内电解处理的实验研究.结果表明:铁炭内电解处理4-亚硝基苯酚废水的主要影响因素依次为pH值、反应时间、铁屑用量、铁炭质量比;在最佳操作条件分别为初始pH值=5、反应时间2h、铁屑用量200g/L、铁炭质量比2:1时,COD去除率可达80%以上;4-亚硝基苯酚的降解过程符合-级动力学规律.  相似文献   

11.
用铁炭微电解方法对农药中间体废水进行预处理,考察了各因素对废水预处理的影响,通过正交试验校正可得CODcr去除率的最佳反应务件为:铁炭质量比为1:4,pH为2,氯化钠质量浓度为200mg/L,搅拌时间为60min。在该条件下CODcr,去除率可达71.73%,达到良好的去除效果,具有良好的应用前景。  相似文献   

12.
通过改变初始pH值、曝气搅拌时间、混凝pH值和铁碳比等条件,研究了铁碳内电解对电镀废水的处理效果。试验结果表明:当原水初始pH值为3.0,曝气搅拌时间为45min,混凝pH值为8.5,铁碳比为1∶1时,电镀废水中色度平均去除率达90%以上,化学需氧量(COD)去除率最高可达41%。  相似文献   

13.
采用微电解-ClO2催化氧化法对毒死蜱农药废水的处理进行了研究,介绍了微电解-催化氧化技术的基本原理,考察了pH值、停留时间、氧化剂投加量对CODCr、色度去除率的影响。实验结果表明,在微电解过程中,当pH为1、停留时间为45min时,CODCr去除率为49 6%,色度去率为90 6%;在催化氧化过程中,当pH为6~7、ClO2投加量为0 5g/L、停留时间为60min时,去除率为97 8%,色度去除率为99 7%。  相似文献   

14.
铁炭微电解对ABS树脂生产废水中典型特征污染物的降解   总被引:1,自引:0,他引:1  
为分解转化ABS树脂生产废水中的有毒难降解特征污染物并提高废水的可生化性,采用铁炭微电解法处理该废水,并利用气质联用色谱检测分析废水中典型特征污染物的分解转化.结果表明微电解系统能高效地分解废水中3-(二甲氨基)-丙腈、3-(二乙氨基)-丙腈、2-氰基乙醚、双(2-氰基乙基)胺、3,3-硫代丙二腈、苯乙烯、苯乙酮、2-苯异丙醇等8种典型的芳香类和有机腈类化合物.同时,微电解系统对废水TOC的去除率在40%~46%,NH3-N生成率稳定在45%~55%,并将废水的ρ(BOD5)/ρ(COD)值由0.32提高至0.71,提高了废水的可生化性.  相似文献   

15.
采用超滤+反渗透组合技术对某焦化厂焦化废水进行了深度处理试验研究,结果表明浸没式超滤单元对悬浮物去除效果明显,平均去除率达98.8%;反渗透装置在70%回收率的条件下,对水中COD、氨氮、总硬度及Cl-的平均去除率分别达到94.6%,75.9%,98.3%和98.6%.超滤膜产水通量及运行情况稳定,反渗透膜系统运行稳定,化学清洗周期较长.结论表明采用"超滤+反渗透双膜工艺对焦化废水进行深度处理,可以保证出水水质达到回用水标准.  相似文献   

16.
综述了中低浓度氨氮废水的几种主要处理技术,介绍了它们的处理原理以及适用条件.指出了今后研究工作中需要解决的问题和氨氮废水处理技术今后的发展方向.  相似文献   

17.
对亚麻生产废水的处理技术,包括理化处理、生物处理和综合处理等方法进行了综述.探讨了各方法的特点和优势,提出了沤麻废水资源化及高浓度的沤麻废水可因地制宜地应用深度处理的方法等建议.  相似文献   

18.
吸附-氧化法处理染色废水的实验研究   总被引:1,自引:0,他引:1  
用活性炭吸附与H_2O_2氧化相结合的方法处理染色废水,与单独用活性炭吸附或H_2O_2氧化处理相比,COD去除率和脱色率均有较大提高。  相似文献   

19.
在综合国内外冷轧平整液废水处理技术研究的基础上,分类别系统介绍了目前平整液废水处理技术。通过对各类处理技术的优缺点分析,指明了"各项技术集成、相互优化"的处理思路。最后介绍了国内部分大型冷轧厂平整液废水的处理工艺流程,并展望了未来发展趋势。  相似文献   

20.
微电解-两相厌氧处理糠醛废水研究   总被引:8,自引:0,他引:8  
以铁屑和焦碳为原料,采用微电解方法对糠醛废水进行预处理后,利用两相厌氧技术对废水进行后步处理,研究了微电解处理的最佳条件.结果表明:微电解铁碳体积比0.5:1.废水停留时间60min后废水CODcr去除率达到28%,色度去除79%,并有效的提高了废水的可生化性,使两相厌氧处理效率由68%提高到88%,微电解-两相厌氧总去除率达到91.4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号