首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Professional antigen-presenting cells (APCs), such as dendritic cells and macrophages, are known for their ability to present exogenous antigens to T cells. However, many other cell types, including endothelial cells, fibroblasts, and lymph node stromal cells, are also capable of presenting exogenous antigens to either CD8+ or CD4+ T cells via cross-presentation or major histocompatibility complex (MHC) class II-mediated presentation, respectively. Antigen presentation by these stromal nonprofessional APCs differentially affect T cell function, depending on the type of cells that present the antigen, as well as the local (inflammatory) micro-environment. It has been recently appreciated that nonprofessional APCs can, as such, orchestrate immunity against pathogens, tumor survival, or rejection, and aid in the progression of various auto-immune pathologies. Therefore, the interest for these nonprofessional APCs is growing as they might be an important target for enhancing various immunotherapies. In this review, the different nonprofessional APCs are discussed, as well as their functional consequences on the T cell response, with a focus on immuno-oncology.  相似文献   

2.
Direct allorecognition is the earliest and most potent immune response against a kidney allograft. Currently, it is thought that passenger donor professional antigen-presenting cells (APCs) are responsible. Further, many studies support that graft ischemia-reperfusion injury increases the probability of acute rejection. We evaluated the possible role of primary human proximal renal tubular epithelial cells (RPTECs) in direct allorecognition by CD4+ T-cells and the effect of anoxia-reoxygenation. In cell culture, we detected that RPTECs express all the required molecules for CD4+ T-cell activation (HLA-DR, CD80, and ICAM-1). Anoxia-reoxygenation decreased HLA-DR and CD80 but increased ICAM-1. Following this, RPTECs were co-cultured with alloreactive CD4+ T-cells. In T-cells, zeta chain phosphorylation and c-Myc increased, indicating activation of T-cell receptor and co-stimulation signal transduction pathways, respectively. T-cell proliferation assessed with bromodeoxyuridine assay and with the marker Ki-67 increased. Previous culture of RPTECs under anoxia raised all the above parameters in T-cells. FOXP3 remained unaffected in all cases, signifying that proliferating T-cells were not differentiated towards a regulatory phenotype. Our results support that direct allorecognition may be mediated by RPTECs even in the absence of donor-derived professional APCs. Also, ischemia-reperfusion injury of the graft may enhance the above capacity of RPTECs, increasing the possibility of acute rejection.  相似文献   

3.
We studied SARS-CoV-2-specific T cell responses in 22 subacute MIS-C children enrolled in 2021 and 2022 using peptide pools derived from SARS-CoV-2 spike or nonspike proteins. CD4+ and CD8+ SARS-CoV-2-specific T cells were detected in 5 subjects, CD4+ T helper (Th) responses alone were detected in 12 subjects, and CD8+ cytotoxic T cell (CTL) responses alone were documented in 1 subject. Notably, a sizeable subpopulation of CD4− CD8− double-negative (DN) T cells out of total CD3+ T cells was observed in MIS-C (median: 14.5%; IQR 8.65–25.3) and recognized SARS-CoV-2 peptides. T cells bearing the Vβ21.3 T cell receptor (TcRs), previously reported as pathogenic in the context of MIS-C, were detected in high frequencies, namely, in 2.8% and 3.9% of the CD4+ and CD8+ T cells, respectively. However, Vβ21.3 CD8+ T cells that responded to SARS-CoV-2 peptides were detected in only a single subject, suggesting recognition of nonviral antigens in the majority of subjects. Subjects studied 6–14 months after MIS-C showed T cell epitope spreading, meaning the activation of T cells that recognize more SARS-CoV-2 peptides following the initial expansion of T cells that see immunodominant epitopes. For example, subjects that did not recognize nonspike proteins in the subacute phase of MIS-C showed good Th response to nonspike peptides, and/or CD8+ T cell responses not appreciable before arose over time and could be detected in the 6–14 months’ follow-up. The magnitude of the Th and CTL responses also increased over time. In summary, patients with MIS-C associated with acute lymphopenia, a classical feature of MIS-C, showed a physiological response to the virus with a prominent role for virus-specific DN T cells.  相似文献   

4.
Antibodies directed against specific regions of a protein have traditionally been raised against full proteins, protein domains or simple unstructured peptides, containing contiguous stretches of primary sequence. We have used a new approach of selecting antibodies against restrained peptides mimicking defined epitopes of the bone modulator protein sclerostin, which has been identified as a negative regulator of the Wnt pathway. For a fast exploration of activity defining epitopes, we produced a set of synthetic peptide constructs mimicking native sclerostin, in which intervening loops from the cystine-knot protein sclerostin were truncated and whose sequences were optimized for fast and productive refolding. We found that the second loop within the cystine knot could be replaced by unnatural sequences, both speeding up folding, and increasing yield. Subsequently, we used these constructs to pan the HuCAL phage display library for antibodies capable of binding the native protein, thereby restricting recognition to the desired epitope regions. It is shown that the antibodies that were obtained recognize a complex epitope in the protein that cannot be mimicked with linear peptides. Antibodies selected against peptides show similar recognition specificity and potency as compared with antibodies obtained from full-length recombinant protein.  相似文献   

5.
A fully synthetic MUC1‐based cancer vaccine was designed and chemically synthesized containing an endogenous helper T‐epitope (MHC class II epitope). The vaccine elicited robust IgG titers that could neutralize cancer cells by antibody‐dependent cell‐mediated cytotoxicity (ADCC). It also activated cytotoxic T‐lymphocytes. Collectively, the immunological data demonstrate engagement of helper T‐cells in immune activation. A synthetic methodology was developed for a penta‐glycosylated MUC1 glycopeptide, and antisera of mice immunized by the new vaccine recognized such a structure. Previously reported fully synthetic MUC1‐based cancer vaccines that elicited potent immune responses employed exogenous helper T‐epitopes derived from microbes. It is the expectation that the use of the newly identified endogenous helper T‐epitope will be more attractive, because it will activate cognate CD4+ T‐cells that will provide critical tumor‐specific help intratumorally during the effector stage of tumor rejection and will aid in the generation of sustained immunological memory.  相似文献   

6.
Cysteine-rich peptides (CRPs) are small proteins of less than 100 amino acids in length characterized by the presence of disulfide bridges and common end-to-end macrocyclization. These properties confer hyperstability against high temperatures, salt concentration, serum presence, and protease degradation to CRPs. Moreover, their intercysteine domains (loops) are susceptible to residue hypervariability. CRPs have been successfully applied as stable scaffolds for molecular grafting, a protein engineering process in which cysteine-rich structures provide higher thermodynamic and metabolic stability to an epitope and acquire new biological function(s). This review describes the successes and limitations of seven cysteine-rich scaffolds, their bioactive epitopes, and the resulting grafted peptides.  相似文献   

7.
The existence of CD4+ cytotoxic T cells (CTLs) at relatively high levels under different pathological conditions in vivo suggests their role in protective and/or pathogenic immune functions. CD4+ CTLs utilize the fundamental cytotoxic effector mechanisms also utilized by CD8+ CTLs and natural killer cells. During long-term cultivation, CD4+ T cells were also shown to acquire cytotoxic functions. In this study, CD4+ human T-cell clones derived from activated peripheral blood lymphocytes of healthy young adults were examined for the expression of cytotoxic machinery components. Cystatin F is a protein inhibitor of cysteine cathepsins, synthesized by CD8+ CTLs and natural killer cells. Cystatin F affects the cytotoxic efficacy of these cells by inhibiting the major progranzyme convertases cathepsins C and H as well as cathepsin L, which is involved in perforin activation. Here, we show that human CD4+ T-cell clones express the cysteine cathepsins that are involved in the activation of granzymes and perforin. CD4+ T-cell clones contained both the inactive, dimeric form as well as the active, monomeric form of cystatin F. As in CD8+ CTLs, cysteine cathepsins C and H were the major targets of cystatin F in CD4+ T-cell clones. Furthermore, CD4+ T-cell clones expressed the active forms of perforin and granzymes A and B. The levels of the cystatin F decreased with time in culture concomitantly with an increase in the activities of granzymes A and B. Therefore, our results suggest that cystatin F plays a role in regulating CD4+ T cell cytotoxicity. Since cystatin F can be secreted and taken up by bystander cells, our results suggest that CD4+ CTLs may also be involved in regulating immune responses through cystatin F secretion.  相似文献   

8.
The loss of immune tolerance to fetal antigens may result in reproductive failure. The downregulated number and activity of T regulatory lymphocytes, which are critical for the establishment of immune tolerance to fetal antigens, during pregnancy may lead to miscarriage. The adoptive transfer of Tregs prevents fetal loss in abortion-prone mice. Recently, we demonstrated that the administration of tregitopes, which are short peptides found in human and mouse immunoglobulins (IgGs), decreased the incidence of abortions in female CBA/J mice mated with DBA/2J mice. Here, two non-IgG source peptides (SGS and LKD) that can potentially bind to the major histocompatibility complex II (MHC II) with high affinity and induce Treg expansion were designed in silico. The immune dysregulation-induced pregnancy failure mouse model was used to evaluate the effect of SGS and LKD on immune response and pregnancy outcome. The fetal death rate in the SGS-treated group was lower than that in the phosphate-buffered saline-treated group. SGS and LKD upregulated the splenic pool of Tregs and modulated the T-helper cell (Th1)/Th2-related cytokine response at the preimplantation stage. Additionally, SGS and LKD downregulated the expression of CD80 and MHC class II molecules in splenic CD11c+ antigen-presenting cells. Thus, SGS treatment can result in beneficial pregnancy outcomes. Additionally, SGS peptide-mediated immunomodulation can be a potential therapeutic strategy for immune dysregulation-induced pregnancy failure.  相似文献   

9.
Beside the interaction of the antigen-presenting major histocompatibility complex with the T-cell receptor, a co-stimulatory signal is required for T-cell activation in an immune response. To reduce immune-mediated graft rejection in corneal transplantation, where topical application of drugs in ointments or eye-drops may be possible, we selected single-chain antibody fragments (scFv) with binding affinity to rat CD86 (B7.2) that inhibit the co-stimulatory signal. We produced the IgV-like domain of rat CD86 as a fusion protein in Escherichia coli by refolding from inclusion bodies. This protein was used as a target for phage display selection of scFv from HuCAL-1, a fully artificial human antibody library. Selected binding molecules were shown to specifically bind to rat CD86 and inhibit the interaction of CD86 with CD28 and CTLA4 (CD152) in flow cytometry experiments. In an assay for CD86-dependent co-stimulation, the selected scFv fragment successfully inhibited the proliferation of T-cells induced by CD86-expressing P815 cells.  相似文献   

10.
Bispecific antibodies (BsAbs) or fusion proteins (BsAbFPs) present a promising strategy for cancer immunotherapy. Numerous BsAbs targeting coinhibitory and costimulatory pathways have been developed for retargeting T cells and antigen presenting cells (APCs). It is challenging to assess the potency of BsAb that engages two different signaling pathways simultaneously in a single assay format, especially when the two antigen targets are expressed on different cells. To explore the potency of anti-PD-L1/CD40L BsAbFP, a fusion protein that binds to human CD40 and PD-L1, we engineered CHO cells as surrogate APCs that express T cell receptor activator and PD-L1, Jurkat cells with PD-1 and NFAT-luciferase reporter as effector T cells, and Raji cell with NFkB-luciferase that endogenously expresses CD40 as accessory B cells. A novel reporter gene bioassay was developed using these cell lines that allows anti-PD-L1/CD40L BsAbFP to engages both PD-1/PD-L1 and CD40/CD40L signaling pathways in one assay. As both reporters use firefly luciferase, the effects of activating both signaling pathways is observed as an increase in luminescence, either as a higher upper asymptote, a lower EC50, or both. This dual target reporter gene bioassay system reflects potential mechanism of action and demonstrated the ability of anti-PD-L1/CD40L BsAbFP to synergistically induce biological response compared to the combination of anti-PD-L1 monovalent monoclonal antibody and agonist CD40L fusion protein, or either treatment alone. The results also showed a strong correlation between the drug dose and biological response within the tested potency range with good linearity, accuracy, precision, specificity and stability indicating properties, suggesting that this “three-cell-in-one” dual target reporter gene bioassay is suitable for assessing potency, structure-function and critical quality attributes of anti-PD-L1/CD40L BsAbFP. This approach could be used for developing dual target bioassays for other BsAbs and antibodies used for combination therapy.  相似文献   

11.
A method for quickly screening and identifying dominant B cell epitopes was developed using hepatitis B virus (HBV) surface antigen as a target. Eleven amino acid fragments from HBV surface antigen were synthesized by 9-fluorenylmethoxy carbonyl solid-phase peptide synthesis strategy, and then CdTe quantum dots were used to label the N-terminals of all peptides. After optimizing the factors for fluorescence polarization (FP) immunoassay, the antigenicities of synthetic peptides were determined by analyzing the recognition and combination of peptides and standard antibody samples. The results of FP assays confirmed that 10 of 11 synthetic peptides have distinct antigenicities. In order to screen dominant antigenic peptides, the FP assays were carried out to investigate the antibodies against the 10 synthetic peptides of HBV surface antigen respectively in 159 samples of anti-HBV surface antigen-positive antiserum. The results showed that 3 of the 10 antigenic peptides may be immunodominant because the antibodies against them existed more widely among the samples and their antibody titers were higher than those of other peptides. Using three dominant antigenic peptides, 293 serum samples were detected for HBV infection by FP assays; the results showed that the antibody-positive ratio was 51.9% and the sensitivity and specificity were 84.3% and 98.2%, respectively. In conclusion, a quantum dot-based FP assay is a very simple, rapid, and convenient method for determining immunodominant antigenic peptides and has great potential in applications such as epitope mapping, vaccine designing, or clinical disease diagnosis in the future.  相似文献   

12.
Melanoma is an aggressive skin cancer that has become increasingly prevalent in western populations. Current treatments such as surgery, chemotherapy, and high-dose radiation have had limited success, often failing to treat late stage, metastatic melanoma. Alternative strategies such as immunotherapies have been successful in treating a small percentage of patients with metastatic disease, although these treatments to date have not been proven to enhance overall survival. Several melanoma antigens (Ags) proposed as targets for immunotherapeutics include tyrosinase, NY-ESO-1, gp-100, and Mart-1, all of which contain both human leukocyte antigen (HLA) class I and class II-restricted epitopes necessary for immune recognition. We have previously shown that an enzyme, gamma-IFN-inducible lysosomal thiol-reductase (GILT), is abundantly expressed in professional Ag presenting cells (APCs), but absent or expressed at greatly reduced levels in many human melanomas. In the current study, we report that increased GILT expression generates a greater pool of antigenic peptides in melanoma cells for enhanced CD4+ T cell recognition. Our results suggest that the induction of GILT in human melanoma cells could aid in the development of a novel whole-cell vaccine for the enhancement of immune recognition of metastatic melanoma.  相似文献   

13.
目的构建丙型肝炎病毒(hepatitis C virus,HCV)中和抗原表位与乙型肝炎病毒(hepatitis B virus,HBV)S抗原嵌合基因真核表达质粒,并在293T细胞中进行表达。方法从含HBV全序列的质粒pHBV中扩增HBV S抗原基因,在HBV S疏水区127和128位氨基酸序列处引入AgeⅠ酶切位点,将HCV E1和E2区保守的线性中和抗原表位及HVR1的模拟表位基因分别插入该位点,获得嵌合HCV中和抗原表位的重组HBV S基因,将该基因克隆至真核表达载体pCI-neo中,构建重组真核表达质粒pCI-HBSE1~4。将4种重组真核表达质粒转染293T细胞,间接免疫荧光和Western blot检测嵌合基因的表达。结果 4种重组真核表达质粒经双酶切证实构建正确;4种重组质粒转染的293T细胞胞浆内可见较强的绿色荧光,Western blot显示,在相对分子质量约27 000处可见蛋白条带。结论成功构建了HCV中和抗原表位与HBV S抗原嵌合基因真核表达质粒,其在293T细胞中可有效表达,为进一步制备嵌合HCV中和抗原表位的HBV S抗原VLP,研究中和抗体对HCV假病毒颗粒(HCVpp)和JFH-1 HCV体外培养系统(HCVcc)感染的抑制作用奠定了实验基础。  相似文献   

14.
Class-I Restricted T Cell-Associated Molecule (CRTAM) is a protein that is expressed after T cell activation. The interaction of CRTAM with its ligand, nectin-like 2 (Necl2), is required for the efficient production of IL-17, IL-22, and IFNγ by murine CD4 T cells, and it plays a role in optimal CD8 T and NK cell cytotoxicity. CRTAM promotes the pro-inflammatory cytokine profile; therefore, it may take part in the immunopathology of autoimmune diseases such as diabetes type 1 or colitis. Thus, antibodies that block the interaction between CRTAM and Necl2 would be useful for controlling the production of these inflammatory cytokines. In this work, using bioinformatics predictions, we identified three short disordered epitopes (sDE1-3) that are located in the Ig-like domains of murine CRTAM and are conserved in mammalian species. We performed a structural analysis by molecular dynamics simulations of sDE1 (QHPALKSSKY, Ig-like V), sDE2 (QRNGEKSVVK, Ig-like C1), and sDE3 (CSTERSKKPPPQI, Ig-like C1). sDE1, which is located within a loop of the contact interface of the heterotypic interaction with Nectl2, undergoes an order–disorder transition. On the contrary, even though sDE2 and sDE3 are flexible and also located within loops, they do not undergo order–disorder transitions. We evaluated the immunogenicity of sDE1 and sDE3 through the expression of these epitopes in chimeric L1 virus-like particles. We confirmed that sDE1 induces polyclonal antibodies that recognize the native folding of CRTAM expressed in activated murine CD4 T cells. In contrast, sDE3 induces polyclonal antibodies that recognize the recombinant protein hCRTAM-Fc, but not the native CRTAM. Thus, in this study, an exposed disordered epitope in the Ig-like V domain of CRTAM was identified as a potential site for therapeutic antibodies.  相似文献   

15.
The folded 3D structures of peptides and proteins provide excellent starting points for the design of synthetic molecules that mimic key epitopes (or surface patches) involved in protein-protein and protein-nucleic acid interactions. Protein epitope mimetics (PEMs) may recapitulate not only the structural and conformational properties of the target epitope but also their biological activities. By transferring the epitope from a recombinant to a synthetic scaffold that can be produced by parallel combinatorial methods, it is possible to optimize properties through iterative cycles of library synthesis and screening, and even to evolve new biological activities. One very interesting scaffold is found in beta-hairpin motifs, which are used by many proteins to mediate molecular recognition events. This motif is readily amenable to PEM design, for example, by transplanting hairpin loop sequences from folded proteins onto hairpin-stabilizing templates, such as the dipeptide D-Pro-L-Pro. In addition, beta-hairpin peptidomimetics can also be exploited to mimic other types of epitopes, such as those based on alpha-helical secondary structures. The size and shape of beta-hairpin PEMs appear well suited for the design of inhibitors of both protein-protein and protein-nucleic acid interactions, endeavors that have so far proven difficult using small "drug-like" molecules. In recent work, it was shown that beta-hairpin PEMs can be designed that mimic the canonical conformations of antibody hypervariable loops, suggesting that novel small-molecule antibody mimics may be feasible. Using naturally occurring peptides as starting points, beta-hairpin mimetics have been discovered that possess antimicrobial activity, while others are potent inhibitors of the chemokine receptor CXCR4. Beta-hairpin PEMs have also been designed and optimized that mimic an alpha-helical epitope in p53 and so block its interaction with HDM2. A crystal structure of one HDM2-mimetic complex revealed how the surface of the protein had adapted to the shape of the hairpin, thereby enhancing inhibitor affinity. Small folded RNA motifs also make interesting targets for inhibitor design. For example, beta-hairpin mimetics have been designed and optimized that bind with high affinity and good selectivity to the TAR and RRE RNA motifs from HIV-1. Solution structures of the mimetics both free and bound to the RNA target provided some surprises, as well as an improved understanding of the mechanisms of binding. These mimetics represent still a relatively new family of RNA-binding molecules, but clearly one with potential for development into novel antiviral agents.  相似文献   

16.
FcgammaRIII (CD16) plays an important role in the anti-tumor effects of therapeutic antibodies. Bi-specific antibodies (bsAbs) targeting FcgammaRIII represent a powerful alternative to the recruitment of the receptor via the Fc fragment, but are not efficiently produced. Single-domain antibodies (sdAbs) endowed with many valuable structural features might help to bypass this problem. In the present work, we have isolated anti-FcgammaRIII sdAbs (C21 and C28) from a phage library generated from a llama immunized with FcgammaRIIIB extra-cellular domains. These sdAbs bind FcgammaRIIIA+ NK cells and FcgammaRIIIB+ polymorphonuclear cells, but not FcgammaRI+ or FcgammaRII+ cells, as detected by indirect immunofluorescence. Competition experiments showed that C21 and C28 sdAbs bind different FcgammaRIII epitopes, with C21 recognizing a linear and C28 a conformational epitope of the receptor. Surface plasmon resonance experiments showed that C21 and C28 sdAbs bind FcgammaRIII with a K(D) in the 10 and 80 nM range, respectively. Importantly, the engagement by both molecules of FcgammaRIIIA expressed by transfected Jurkat T cells or by NK cells derived from peripheral blood induced a strong IL-2 and IFN-gamma production, respectively. These anti-FcgammaRIII sdAbs represent versatile tools for generating bsAbs under various formats, able to recruit FcgammaRIII killer cells to target and destroy tumor cells.  相似文献   

17.
Uptake and processing of antigens by antigen presenting cells (APCs) is a key step in the initiation of the adaptive immune response. Studying these processes is complex as the identification of low abundant exogenous antigens from complex cell extracts is difficult. Mass-spectrometry based proteomics – the ideal analysis tool in this case – requires methods to retrieve such molecules with high efficiency and low background. Here, we present a method for the selective and sensitive enrichment of antigenic peptides from APCs using click-antigens; antigenic proteins expressed with azidohomoalanine (Aha) in place of methionine residues. We here describe the capture of such antigens using a new covalent method namely, alkynyl functionalized PEG-based Rink amide resin, that enables capture of click-antigens via copper-catalyzed azide-alkyne [2 + 3] cycloaddition (CuAAC). The covalent nature of the thus formed linkage allows stringent washing to remove a-specific background material, prior to retrieval peptides by acid-mediated release. We successfully identified peptides from a tryptic digest of the full APC proteome containing femtomole amounts of Aha-labelled antigen, making this a promising approach for clean and selective enrichment of rare bioorthogonally modified peptides from complex mixtures.  相似文献   

18.
Synthetic vaccines, based on antigenic peptides that comprise MHC−I and MHC-II T-cell epitopes expressed by tumors, show great promise for the immunotherapy of cancer. For optimal immunogenicity, the synthetic peptides (SPs) should be adjuvanted with suitable immunostimulatory additives. Previously, we have shown that improved immunogenicity in vivo is obtained with vaccine modalities in which an SP is covalently connected to an adjuvanting moiety, typically a ligand to Toll-like receptor 2 (TLR2). SPs were covalently attached to UPam, which is a derivative of the classic TLR2 ligand Pam3CysSK4. A disadvantage of the triply palmitoylated UPam is its high lipophilicity, which precludes universal adoption of this adjuvant for covalent modification of various antigenic peptides as it renders the synthetic vaccine insoluble in several cases. Here, we report a novel conjugatable TLR2 ligand, mini-UPam, which contains only one palmitoyl chain, rather than three, and therefore has less impact on the solubility and other physicochemical properties of a synthetic peptide. In this study, we used SPs that contain the clinically relevant neoepitopes identified in a melanoma patient who completely recovered after T-cell therapy. Homogeneous mini-UPam-SP conjugates have been prepared in good yields by stepwise solid-phase synthesis that employed a mini-UPam building block pre-prepared in solution and the standard set of Fmoc-amino acids. The immunogenicity of the novel mini-UPam-SP conjugates was demonstrated by using the cancer patient's T-cells.  相似文献   

19.
Mycobacterium avium subspecies paratuberculosis (Map) is the causative agent of Johne's disease (JD). Current serological diagnostic tests for JD are limited by their sensitivity when used in sub-clinical stages of the disease. Our objective was to identify peptides that mimic diagnostically important Map epitopes that might be incorporated into a new-generation JD diagnostic. Four peptides were isolated from a phage-displayed random peptide library by screening on antibodies derived from Map-infected goats. The peptides were recognised by antibodies from Map-infected goats but not by antibodies from uninfected goats. The peptides elicited immune responses in rabbits, which reacted strongly with bona fide Map antigens proving the peptides were true epitope mimics. To assess the diagnostic value a panel of goat sera was screened for reactivity's with peptides. The peptides were recognised by antibodies from a proportion of goats infected with Map compared with control animals with a diagnostic specificity of 100% and the sensitivity ranged from 50 to 75%. Combinations of any two peptides improved sensitivity 62.5-87.5% and 100% sensitivity was achieved with three of the four peptides in combination. These data suggest peptides representing diagnostically important Map epitopes could be incorporated into a sensitive diagnostic test.  相似文献   

20.
We have developed peptides that are able to distinguish between subgroups of polyclonal antibodies. These β‐hairpin peptides act as conformational epitopes with specific shape and flexibility; they have been analyzed by NMR and CD spectroscopy, and have been shown to identify known disease markers. As a standalone mini β‐sheet, a hairpin is stabilized by alternating pairs of hydrogen‐bonded and non‐bonded amino acids on its two opposing peptide strands. A single d mutation disrupts this secondary structure, the correlated double‐d mutation of two opposing amino acids compensates for this destabilizing effect. The designed kink was introduced into both hydrogen‐bonded and ‐non‐bonded positions of an all‐l hairpin that is a known conformational epitope in molecular recognition. Our peptides enabled the discrimination of different human rheumatoid arthritis autoantibodies in an ELISA assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号