首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An alternating phenylenevinylene copolymer P with perylene bisimide units has been used as organic sensitizer to fabricate dye-sensitized solar cells (DSSCs) based on porous and TiCl4 modified TiO2 photoelectrodes. As a consequence of the compact layer formed by TiCl4 treatment to the porous TiO2 thin film layer, an efficient electron network was formed. Dark current measurements and electrochemical impedance spectra (EIS) suggested that modified photoelectrode significantly reduced the recombination rate of electrons with redox couple in the electrolyte due to the reduced bare FTO surface and longer electron lifetime as compared to the porous TiO2 photoelectrode. The power conversion efficiency of DSSCs utilizing this copolymer as sensitizer is about 2.60% and 3.98% with porous and modified TiO2 photoelectrodes, respectively.  相似文献   

2.
The cathodic behaviour of oxides formed on titanium electrodes in physiological solutions at potentials between 3 and 5 V (vs. SCE) was studied by cyclic voltammetry. In case of anodic polarization at potentials higher than 3 V (vs. SCE), a cathodic peak at ∼0.4 V (vs. SCE) appears in the cathodic scan, which could be due to the reduction of unstable peroxides. The results show that this peak depends on the anodic potential and the oxidation time. This behaviour supposedly is due to the formation of unstable titanium peroxides like TiO3 during anodization. Based on repetitive oxidation-reduction processes can be concluded that the created amount of TiO3 inside of the TiO2 surface layer seems to be constant.  相似文献   

3.
Microwave (MW) processing has been studied as an alternative method of hydroxyapatite (HA) based composite coatings on commercially pure titanium (CPTi) to enhance the bioactivity for orthopaedic and dental implant applications. The coating was formed by processing CPTi metal packed in HA and at 800 W microwave power for 22 min. The composition of the coating was found to be TiO2 (rutile) as major phase along with HA as minor phase. The MW absorption of non-stoichiometric TiO2 layer, which was grown during the initial hybrid heating, resulted in sintering of apatite particles interfacing them. The non-stoichiometric nature of TiO2 was evident from the observed mid-gap bands in ultraviolet-visible diffusive reflectance (UV-VIS-DR) spectrum. The lamellar α structure of the substrate suggests that the processing temperature was above β transus of CPTi (1155 K). The oxygen stabilized α phase whose thickness increased with microwave processing time, was likely to be the reason for the increase in Young's Modulus and hardness of the substrate. The coating induced apatite precipitation in bioactivity test. The osteoblast cell adhesion test demonstrated cell spreading which is considered favourable for cell proliferation and differentiation. Thus, in situ composite coating of titania and HA on CPTi was obtained by a simple one-step process.  相似文献   

4.
The oxidation behaviour of Ti2AlC bulk and high velocity oxy-fuel spray deposited coatings has been investigated for temperatures up to 1200 °C. X-ray diffraction and electron microscopy show that bulk Ti2AlC forms a continuous layer of α-Al2O3 below a layer of TiO2 at temperatures as low as 700 °C. Oxidation of the Ti2AlC coatings is more complex, and also involves the phases Ti3AlC2, TiC, and TixAly, formed during the spraying process. α-Al2O3 is observed, however, it is unevenly distributed deep into the material, and does not form a continuous layer essential for good oxidation resistance.  相似文献   

5.
The cyclic-oxidation behavior of Ti3AlC2 was investigated at 1000–1300 °C in air for up 40 cycles. It was revealed that Ti3AlC2 had excellent resistance to thermal cycling. The cyclic oxidation of Ti3AlC2 basically obeyed a parabolic law. In all cases, the scales were dense, resistant to spalling and highly stratified. The inner continuous α-Al2O3 layer was well adhesive, while the outermost layer changed from rutile TiO2 at temperatures below 1100 °C to Al2TiO5 at 1200 and 1300 °C, respectively. At 1300 °C, a mechanical-keying structure of inner Al2O3 to the Ti3AlC2 substrate formed, which improved the resistance to scale-spallation.  相似文献   

6.
S.J. Yuan 《Corrosion Science》2007,49(3):1276-1304
The corrosion behavior of the 70/30 Cu-Ni alloy in stagnant, aerated pristine and sulfide-containing simulated seawater as a function of exposure time was investigated with polarization curve measurement and electrochemical impedance spectroscopy (EIS). It was demonstrated that the compact protective oxide film formed on the 70/30 Cu-Ni alloy resulted in the decrease of corrosion rate in aerated pristine seawater; while the corrosion rate of 70/30 Cu-Ni alloy in aerated sulfide-containing seawater increased dramatically due to the catalysis of the sulfide ions or sulfide scale for both the cathodic and anodic reactions. The impedance spectra and the corresponding equivalent circuits confirmed that a duplex layer of a surface film was formed on the 70/30 Cu-Ni alloy in aerated pristine seawater after a period of time and that the inner layer was responsible for the good resistance of the alloy; while only a porous and non-protective corrosion product layer formed on the 70/30 Cu-Ni alloy in aerated sulfide-containing seawater, which made small values of charge transfer resistance (Rct) to last for a abnormally long time by interfering with the growth of the protective oxide film. The composition of the surface film on the alloy in pristine and sulfide-containing seawater for different exposure times were investigated thoroughly by XPS. It was found that the duplex corrosion product layer formed on the alloy in pristine seawater was composed of an inner Cu2O and an outer CuO layer. The porous and non-protective corrosion product layer formed on the alloy in aerated sulfide-containing seawater was a mixture of CuCl, Cu2S, NiS, Cu2O and NiO with trace amounts of CuO and Ni(OH)2 and that the most significant component was Cu2S. In addition, SEM was used to analyze the topography of the 70/30 Cu-Ni alloy in both solutions after different exposure times.  相似文献   

7.
Inorganic silicate composite coatings on γ-TiAl were fabricated by air spraying. The oxidation behaviour of the alloy was investigated at 900 °C. The results indicated that rapid oxidation occurred in the γ-TiAl, and multilayered non-protective TiO2 and Al2O3 scales formed. For coated γ-TiAl alloy, the oxidation was markedly inhibited; a thin Al2O3 layer was detected, which improved the oxidation resistance of the alloy. The low oxygen partial pressure at the interface of the coatings and the alloy promotes the preferentially oxidation of Al in the γ-TiAl substrate, and the outward diffusion of Ti to form TiO2 was retarded.  相似文献   

8.
In this study, the corrosion susceptibility of aluminum matrix composites reinforced with artificially oxidized SiO2 and sol-gel Fe/TiO2 coated silicon carbide particles (SiCp) has been investigated. Corrosion behavior of the composites, fabricated by the liquid metal infiltration technique, was established in chloride containing alkaline environments by cyclic polarization (CP) and electrochemical impedance spectroscopy (EIS) techniques. It has been found that, sol-gel coating of SiC particles with Fe/TiO2 has a detrimental effect on the corrosion characteristics of A380-SiC metal matrix composite.  相似文献   

9.
In order to investigate the role of chlorine in the oxidation resistance of Ti-45at.%Al-1.6at.%Mn intermetallic compounds, specimens with and without chlorine were prepared by a reactive sintering and a remelting process, respectively, and then isothermally oxidized at temperatures of 800 to 1000°C. The oxidation resistance of reactive-sintered Ti-45at.%Al-1.6at.%Mn containing 0.02 wt.%Cl was superior to that of remelted specimens due to the formation of a protective Al2O3, layer. From the results of an EPMA line scan of a cross-section of the oxide layer, carbon and chlorine peaks were detected on the TiO2 layer of the reactive-sintered specimens suggesting that TiO2 can decompose to TiCl4 through the reaction with Cl2 and C (or CO). As a result of the chlorination of TiO2, the growth of TiO2 could be constrained and a protective A12O3 scale was easily formed on the reactive-sintered alloy.  相似文献   

10.
Porous titanium was treated by micro-arc oxidation (MAO) in the aqueous electrolytes containing 0.1 and 0.2 M NaOH. The microstructure (including morphology, phase component, element composition and chemical species) and in vitro apatite-forming ability of the oxidized films formed on the inner-pore walls of porous titanium were investigated. It is found that continuous thin films with pore sizes of 20-60 nm are formed in both electrolytes. The films consist of an amorphous TiO2 outmost layer, a coexisted intermediate layer of amorphous TiO2 and rutile, and a Ti2O3 bottom layer, and tightly bond to the titanium substrate without any cracks. In vitro bioactivity assessment shows that both MAO films possess high apatite-forming abilities. It is also found that, compared with the film formed in the 0.1 M NaOH-containing electrolyte, the film formed in the 0.2 M NaOH-containing electrolyte has a higher roughness and more nanopores which help shorten apatite induction time. It is expected the MAO-formed bioactive porous titanium will not only be beneficial to bone ingrowth into the porous structure, but also be beneficial to achieve a tough chemical bonding at the bone/implant interface.  相似文献   

11.
A conformal titanium dioxide (TiO2) layer was deposited onto chromium nitride (CrN) coated stainless steel by atomic layer deposition technique, and the electrochemical corrosion test on the CrN single-layer and TiO2/CrN double-layer coated sample was carried out. The equilibrium corrosion potential of the double-layer coated sample shifted positively compare to that of the single-layer coated one. Moreover, the corrosion current density decreased significantly with the TiO2 deposition, revealing that better corrosion resistance was obtained after the deposition of the TiO2 layer. The improvement in corrosion resistance after the TiO2 deposition was attributed to the blocking of the through-thickness cracks or pinholes in the CrN layer.  相似文献   

12.
Titanium dioxide (TiO2) films have been deposited onto stainless steel substrates using atomic layer deposition (ALD) technique. Composition analysis shows that the films shield the substrates entirely. The TiO2 films are amorphous in structure as characterized by X-ray diffraction. The electrochemical measurements show that the equilibrium corrosion potential positively shifts from − 0.96 eV for bare stainless steel to − 0.63 eV for TiO2 coated stainless steel, and the corrosion current density decreases from 7.0 × 10− 7 A/cm2 to 6.3 × 10− 8 A/cm2. The corrosion resistance obtained by fitting the impedance spectra also reveals that the TiO2 films provide good protection for stainless steel against corrosion in sodium chloride solution. The above results indicate that TiO2 films deposited by ALD are effective in protecting stainless steel from corrosion.  相似文献   

13.
In this work, we characterized the anodic dissolution and the hydrogen transport within carbon steel (SAE 1018) samples immersed in alkaline sour solutions (CN, polysulfide-base inhibitor and H2S(aq)). The evolution of interfacial and transport processes could be quantified by Electrochemical Impedance Spectroscopy (EIS) and hydrogen permeation measurements. EIS experimental data were analyzed and fitted by using Transmission Line Model (TLM); this latter helped to propose the mechanisms through the porous layer of the corrosion products formed. The area influencing the dissolution and the mass transfer process was quantified by the pores number, pores thickness and the interfacial passive electrical elements describing the mechanisms in different regions within the pores of the corrosion product layer. The TLM was used to analyze the active-mass transport processes occurred at different spatial positions of the porous layer, such as the mass transfer at the wall and the active-mass transfer at the base of the cylindrical pore of the non-stoichiometric FexSy.  相似文献   

14.
The corrosion behaviour of 16%Cr and 16%Cr-4%Al ODS ferritic steels in different heat treatment conditions has been investigated in a supercritical water environment. The exposed coupons were analyzed using scanning electron microscopy (SEM), electron probe micro analysis (EPMA), Auger and X-ray diffraction analysis (XRD). It was found that the formation of oxides depends on the chemical composition and not on the metallurgical condition. The Al-free alloys formed a monolayer oxide film composed of (Cr, Fe)2O3. The Al-containing alloys formed an oxide film composed of an outer layer of hematite and magnetite and an inner layer of Al2O3. The oxidation mechanisms are discussed.  相似文献   

15.
Katsuyuki Morii 《Synthetic Metals》2009,159(21-22):2312-2314
The role of the TiO2 layer in hybrid organic–inorganic light-emitting diodes (HOILEDs) was discussed. A TiO2 layer was fabricated using a process that formed an “oxygen-rich” and “porous” TiO2 layer in an HOILED. The importance of the surface state on the TiO2 and the hole injection scheme in the HOILED was confirmed. All the data support the idea that HOILEDs are strongly hole-dominated LEDs, and that the TiO2 in HOILEDs plays a supporting role. The TiO2 seems to act as a hole-blocking layer.  相似文献   

16.
This paper addresses the oxidation behaviour of Ti–Al–C films composed mainly of a Ti2AlC phase. The films exhibited rather low oxidation rates at 600 and 700 °C, with an oxygen-rich zone or a thin oxide layer appearing on the film surfaces. Much faster oxidation rates were observed at 800 and 900 °C. The Ti2AlC phase was quickly consumed by oxidation. From the film surface to the inner zone, TiO2-rich layer, Al2O3-rich layer, and TiO2 + Al2O3 mixed layer was observed, respectively. The oxidation mechanism of the Ti–Al–C film is discussed based on the experimental results.  相似文献   

17.
The oxidation behaviour of single crystal PWA 1483 at 950 °C was investigated by means of XRD, SEM and EDS. The parabolic oxidation behaviour, as defined by mass gain and the respective oxide layer thicknesses, is characterized by a parabolic rate constant of about 4 × 10−6 mg2/(cm4 × s) and the formation of a multi-layered oxide scale. An outer scale contains a Ti-bearing thin film composed of TiO2 and NiTiO3 but mostly Cr in Cr2O3 and (Ni/Co)Cr2O4 besides NiTaO4. This outer scale is connected to a discontinuous layer of Al2O3 and an area of γ′-depletion within the base material.  相似文献   

18.
A.A. Hermas 《Corrosion Science》2008,50(9):2498-2505
Improvement of the passivation behavior of Type 304 austenitic stainless steel (SS) by coating with conductive polymers (CPs), like polyaniline (PANI) and poly(o-phenylenediamine) (PoPD), followed by exposure in an acid solution has been demonstrated. The passive films formed on SSs (after peeling off the polymer layer) are compared with those formed during anodic polarization under the same exposure condition. The passive films beneath the CPs are thicker and less hydrated than those formed on uncoated stainless steel. The polymer layer enhances the enrichment of chromium and nickel in the entire passive oxide, forming a more protective film than that formed during anodic polarization. The elemental distribution within the passive film is different in the two modes of passivation. The type of the polymer influences on the composition of the passive film. The best passivation is obtained by PoPD, with the passive film resulting in significant resistance of the SS to pitting corrosion in the 3% NaCl solution. The oxide film of this steel is characterized, in its inner and outer layers, by the highest ratio of Cr(OH)3/Cr2O3 and the lowest content of iron species.  相似文献   

19.
Hot corrosion behaviour of Nb–16Si–24Ti–6Cr–6Al–2Hf (at.%) in the mixture of Na2SO4 and NaCl melts at 900 °C was studied. The results show that the corrosion kinetics of the alloy fit parabolic law. The oxides consist of a loose and porous outer layer and an internal oxidation zone. Outer oxides are mainly composed of TiO2, TiNb2O7, Nb2O5, CrNbO4 and SiO2 while the internal oxidation zone is composed of TiO2. Hot corrosion mechanism of the alloy in the presence of Na2SO4 and NaCl deposits is discussed.  相似文献   

20.
An alloy of 51.23Ti−48.73Al−0.4Fe (at.%) was oxidized at 800, 900 and 1000°C in air to determine the effect of Fe on oxidation. The scales formed consisted of an outer TiO2 layer, an intermediate Al2O3 layer, and an inner mixed (TiO2 Al2O3) layer, typical of conventional TiAl alloys. A small amount of dissolved Fe ions was weakly segregated in the outer TiO2 layer and also in the inner (TiO2−Al2O3) mixed layer. Ti2AIN and TiN were detected in the scale in some instances. A thin, oxygen-affected Ti3Al sublayer formed at the oxide-substrate interface. The overall oxidation kinetics and the scale morphology were not affected by Fe-addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号