首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unhydrated air-dried films of rhodopsin from bovine rod outer segment membranes do not produce its active state, metarhodopsin II. In order to reveal requirements for its formation, we studied changes in H-bonding of water, peptide carbonyl and carboxylic acid in the photochemical reactions by means of difference Fourier transform infrared spectroscopy, under both hydrated and unhydrated conditions. A water molecule near Glu113, which undergoes H-bonding change in bathorhodopsin, remained in the unhydrated film, but with a weaker H-bonding state than in the hydrated film. The other water molecules, which shfit in lumirhodopsin and metarhodopsin I as well as in bathorhodopsin of the hydrated film, were not observed in the unhydrated film. Effects of the dehydration were detected in all the C=O stretching vibrations of the peptide backbone and of Asp83 in the formation of bathorhodopsin. The C=O stretching band of Asp83 of lumirhodopsin and metarhodopsin I is intensified in the unhydrated film. We propose that structural changes at the intradiscal site in the interaction between the Schiff base and Glu113 affect water molecules, the peptide backbone, Asp83 and Glu122 in helices B and C through consecutive photochemical processes to metarhodopsin II.  相似文献   

2.
A mutation in the gene for the rod photoreceptor molecule rhodopsin causes congenital night blindness. The mutation results in a replacement of Gly90 by an aspartic acid residue. Two molecular mechanisms have been proposed to explain the physiology of affected rod cells. One involves constitutive activity of the G90D mutant opsin [Rao, V. R., Cohen, G. B., & Oprian, D. D. (1994) Nature 367, 639-642]. A second involves increased photoreceptor noise caused by thermal isomerization of the G90D pigment chromophore [Sieving, P. A., Richards, J. E., Naarendorp F., Bingham, E. L., Scott, K., & Alpern, M. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 880-884]. Based on existing models of rhodopsin and in vitro biochemical studies of site-directed mutants, it appears likely that Gly90 is in the immediate proximity of the Schiff base chromophore linkage. We have studied in detail the mutant pigments G90D and G90D/E113A using biochemical and Fourier-transform infrared (FTIR) spectroscopic methods. The photoproduct of mutant pigment G90D, which absorbs maximally at 468 nm and contains a protonated Schiff base linkage, can activate transducin. However, the active photoproduct decays rapidly to opsin and free all-trans-retinal. FTIR studies of mutant G90D show that the dark state of the pigment has several structural features of metarhodopsin II, the active form of rhodopsin. These include a protonated carboxylic acid group at position Glu113 and increased hydrogen-bond strength of Asp83. Additional results, which relate to the structure of the active G90D photoproduct, are also reported. Taken together, these results may be relevant to understanding the molecular mechanism of congenital night blindness caused by the G90D mutation in human rhodopsin.  相似文献   

3.
Recent molecular models of rhodopsin (Rho) propose a specific interaction between transmembrane (TM) helices 3 and 5, which appears to be mediated by amino acid residues Glu122 and His211 on TM helices 3 and 5, respectively. To test this proposed interaction, four single-site histidine replacement mutants (H100N, H152N, H211N, and H211F), two single-site glutamic acid replacement mutants (E122Q and E122A), and three double-site replacement mutants (E122Q/H211F, E122Q/H211N, and E122A/H211F) of Rho were prepared. The expressed mutant pigments reconstituted into membranes were studied by FTIR difference spectroscopy addressing especially the transition to metarhodopsin I (MI). It is shown that the lipid environment influences bands typical of the MI state. Spectra of mutants with substituted Glu122 allowed assignments of the C=O stretch of protonated Glu122 in the dark state and in MI of Rho. Mutation of His211, but not of other histidine residues, affects these vibrational modes assigned to Glu122. In addition, replacements of His211 affect protein modes that are proposed to arise from a third, hydroxyl-bearing group, which also interacts with Glu122. These modes are influenced as well when Glu122 is replaced by Ala in mutant E122A but not when it is replaced by Gln in mutant E122Q. These results provide direct experimental evidence for an interaction between TM helices 3 and 5 in Rho, which is mediated by Glu122 and His211.  相似文献   

4.
Random mutagenesis with ouabain selection has been used to comprehensively scan the extracellular and transmembrane domains of the alpha1 subunit of the sheep Na+/K+-ATPase for amino acid residues that alter ouabain sensitivity. The four random mutant libraries used in this study include all of the transmembrane and extracellular regions of the molecule as well as 75% of the cytoplasmic domains. Through an extensive number of HeLa cell transfections of these libraries and subsequent ouabain selection, 24 ouabain-resistant clones have been identified. All previously described amino acids that confer ouabain resistance were identified, confirming the completeness of this random mutagenesis screen. The amino acid substitutions that confer the greatest ouabain resistance, such as Gln111-->Arg, Asp121-->Gly, Asp121-->Glu, Asn122-->Asp, and Thr797-->Ala were identified more than once in this study. This extensive survey of the extracellular and transmembrane regions of the Na+/K+-ATPase molecule has identified two new regions of the molecule that affect ouabain sensitivity: the H4 and the H10 transmembrane regions. The new substitutions identified in this study are Leu330-->Gln, Ala331-->Gly, Thr338-->Ala, and Thr338-->Asn in the H4 transmembrane domain and Phe982-->Ser in the H10 transmembrane domain. These substitutions confer modest increases in the concentration of cardiac glycoside needed to produce 50% inhibition of activity (IC50 values), 3.1-7.9-fold difference. The results of this extensive screening of the Na+/K+-ATPase alpha1 subunit to identify amino acids residues that are important in ouabain sensitivity further supports our hypothesis that the H1-H2 and H4-H8 regions represent the major binding sites for the cardiac glycoside class of drugs.  相似文献   

5.
Cys-scanning mutagenesis has been applied to the remaining 45 residues in lactose permease that have not been mutagenized previously (from Gln100 to Arg144 which comprise helix IV and adjoining loops). Of the 45 single-Cys mutants, 26 accumulate lactose to > 75% of the steady state observed with Cys-less permease, and 14 mutants exhibit lower but significant levels of accumulation (35-65% of Cys-less permease). Permease with Phe140-->Cys or Lys131-->Cys exhibits low activity (15-20% of Cys-less permease), while mutants Gly115-->Cys, Glu126-->Cys and Arg144-->Cys are completely unable to accumulate the dissacharide. However, Cys-less permease with Ala or Pro in place of Gly115 is highly active, and replacement of Lys131 or Phe140 with Cys in wild-type permease has a less deleterious effect on activity. In contrast, mutant Glu126-->Cys or Arg144-->Cys is inactive with respect to both uphill and downhill transport in either Cys-less or wild-type permease. Furthermore, mutants Glu126-->Ala or Gln and Arg144-->Ala or Gln are also inactive in both backgrounds, and activity is not rescued by double neutral replacements or inversion of the charged residues at these positions. Finally, a mutant with Lys in place of Arg144 accumulates lactose to about 25% of the steady state of wild-type, but at a slow rate. Replacement of Glu126 with Asp, in contrast, has relatively little effect on activity. None of the effects can be attributed to decreased expression of the mutants, as judged by immunoblot analysis. Although the activity of most of the single-Cys mutants is unaffected by N-ethylmaleimide, Cys replacement at three positions (Ala127, Val132, or Phe138) renders the permease highly sensitive to alkylation. The results indicate that the cytoplasmic loop between helices IV and V, where insertional mutagenesis has little effect on activity [McKenna, E., et al. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 11954-11958], contains residues that play an important role in permease activity and that a carboxyl group at position 126 and a positive charge at position 144 are absolutely required.  相似文献   

6.
The role of amino acid residues located in the active site pocket of phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus cereus[Heinz, D. W., Ryan, M., Bullock, T., & Griffith, O. H. (1995) EMBO J. 14, 3855-3863] was investigated by site-directed mutagenesis, kinetics, and crystal structure analysis. Twelve residues involved in catalysis and substrate binding (His32, Arg69, His82, Gly83, Lys115, Glu117, Arg163, Trp178, Asp180, Asp198, Tyr200, and Asp274) were individually replaced by 1-3 other amino acids, resulting in a total number of 21 mutants. Replacements in the mutants H32A, H32L, R69A, R69E, R69K, H82A, H82L, E117K, R163I, D198A, D198E, D198S, Y200S, and D274S caused essentially complete inactivation of the enzyme. The remaining mutants (G83S, K115E, R163K, W178Y, D180S, Y200F, and D274N) exhibited reduced activities up to 57% when compared with wild-type PI-PLC. Crystal structures determined at a resolution ranging from 2.0 to 2.7 A for six mutants (H32A, H32L, R163K, D198E, D274N, and D274S) showed that significant changes were confined to the site of the respective mutation without perturbation of the rest of the structure. Only in mutant D198E do the side chains of two neighboring arginine residues move across the inositol binding pocket toward the newly introduced glutamic acid. An analysis of these structure-function relationships provides new insight into the catalytic mechanism, and suggests a molecular explanation of some of the substrate stereospecificity and inhibitor binding data available for this enzyme.  相似文献   

7.
Rat hepatic squalene synthase (RSS, EC 2.5.1.21) contains three conserved sections, A, B, and C, that were proposed to be involved in catalysis (McKenzie, T. L., Jiang, G., Straubhaar, J. R., Conrad, D., and Shechter, I. (1992) J. Biol. Chem. 267, 21368-21374). Here we use the high expression vector pTrxRSS and site-directed mutagenesis to determine the specific residues in these sections that are essential for the two reactions catalyzed by RSS. Section C mutants F288Y, F288L, F286Y, F286W, F286L, Q293N, and Q283E accumulate presqualene diphosphate (PSPP) from trans-farnesyl diphosphate (FPP) with reduced production of squalene. F288L, which retains approximately 50% first step activity, displays only residual activity (0.2%) in the production of squalene from either FPP or PSPP. Substitution of either Phe288 or Phe286 with charged residues completely abolishes the enzyme activity. Thus, F288W, F288D, F288R, F286D, and F286R cannot produce squalene from either FPP or PSPP. All single residue mutants in Section A, except Tyr171, retain most of the RSS activity, with no detectable accumulation of PSPP in an assay mixture complete with NADPH. Y171F, Y171S, and Y171W are all inactive. Section B, which binds the diphosphate moieties of the allylic diphosphate subtrates, contains four negatively charged residues: Glu222, Glu226, Asp219, and Asp223. The two Glu residues can be replaced with neutral or with positively charged residues without signficantly affecting enzyme activity. However, replacement of either Asp residues with Asn eliminates all but a residual level of activity, and substitution with Glu abolishes all activity. These results indicate that 1) Section C, in particular Phe288, may be involved in the second step of catalysis, 2) Tyr171 of Section A is essential for catalysis, most likely for the first reaction, 3) the two Asp residues in Section B are essential for the activity and most likely bind the substrate via magnesium salt bridges. Based on these results, a mechanism for the first reaction is proposed.  相似文献   

8.
Pyridine nucleotide transhydrogenase (EC 1.6.1.1) from Escherichia coli was investigated with respect to the role of glutamic and aspartic acid residues reactive to N,N'-dicyclohexylcarbodiimide (DCCD) and potentially involved in the proton-pumping mechanism of the enzyme. The E. coli transhydrogenase consists of an alpha (510 residues) and a beta (462 residues) subunit. DCCD reacts with the enzyme to inhibit catalytic activity and proton pumping. This reagent modifies Asp alpha 232, Glu alpha 238, and Glu alpha 240 as well as amino acid residue(s) in the beta subunit. Using the cloned and overexpressed E. coli transhydrogenase genes (Clarke, D. M., and Bragg, P. D. (1985) J. Bacteriol. 162, 367-373), Asp alpha 232 and Glu alpha 238 were replaced independently by site-specific mutagenesis. In addition, Asp alpha 232, Glu alpha 238, and Glu alpha 240 were replaced to generate triple mutants. The specific catalytic activities of the mutant transhydrogenases alpha D232N, alpha D232E, alpha D232K, alpha D232H, alpha E238K, and alpha E238Q as well as of the triple mutants alpha D232N, alpha E238Q, alpha E240Q and alpha D232H, alpha E238Q, alpha E240Q were in the range of 40-90% of the wild-type activity. Proton-pumping activity was present in all mutants. Examination of the extent of subunit modification by [14C]DCCD revealed that the label was still incorporated into both alpha and beta subunits in the Asp alpha 232 mutants, but that the alpha subunit was not labeled in the triple mutants. Catalytic and proton-pumping activities were nearly insensitive to DCCD in the triple mutants. This suggests that loss of catalytic and proton-pumping activities is associated with modification of the aspartic and glutamic acid residues of the alpha subunit. In the presence of the substrate NADPH, the rate of modification of the beta subunit by [14C]DCCD was increased, and there was a greater extent of enzyme inactivation. By contrast, NADH and 3-acetylpyridine-NAD+ protected the catalytic activity of the transhydrogenase from inhibition by DCCD. The protection was particularly marked in the E238Q and E238K mutants. It is concluded that the Asp alpha 232, Glu alpha 238, and Glu alpha 240 residues are not essential for catalytic activity or proton pumping. The inactivation by DCCD is likely due to the introduction of a sterically hindering group that reacts with the identified acidic residues close to the NAD(H)-binding site.  相似文献   

9.
Three transmembrane glutamic acid residues play essential roles in the metal-tetracycline/H+ antiporter Tet(K) of Staphylococcus aureus [Fujihira et al., FEBS Lett. 391 (1996) 243-246]. In the putative hydrophilic loop region of the Tet(K) and Tet(L) proteins, six acidic residues are conserved. Asp74, Asp200, Asp318 and Glu381 are located on the putative cytoplasmic side, and Asp39 and Glu345 on the putative periplasmic side. These residues were replaced by a neutral amino acid residue or a charge-conserved one. In contrast to the transmembrane glutamic acid residues, the replacement of the two glutamic acid residues (Glu345 and Glu381) did not affect the tetracycline resistance level. Out of the other four aspartic acid residues, the only essential residue is Asp318, any replacement of which resulted in complete loss of the tetracycline resistance and transport activity. Asp318 is located in cytoplasmic loop 10-11 in the putative 14-transmembrane-segment topology of Tet(K). In the case of the tetracycline exporters of Gram-negative bacteria, the only essential acidic residue in the cytoplasmic loop region is located in loop 2-3 [Yamaguchi et al., Biochemistry 31 (1992) 8344-8348]. It may be a general role for tetracycline efflux proteins that three transmembrane and one cytoplasmic acidic residues are mandatory for the tetracycline transport function.  相似文献   

10.
Monoamine oxidase B (MAO B) catalyzes the oxidative deamination of biogenic and xenobiotic amines. The oxidative step is coupled to the reduction of an obligatory cofactor, FAD, which is covalently linked to the apoenzyme at Cys397. Our previous studies identified two noncovalent flavin-binding regions in MAO B (residues 6-34 and 39-46) (Kwan, S.-W., Lewis, D. A., Zhou, B. P., and Abell, C. W. (1995) Arch. Biochem. Biophys. 316, 385-391; Zhou, B. P., Lewis, D. A., Kwan, S.-W., Kirksey, T. J., and Abell, C. W. (1995) Biochemistry 34, 9526-9531). In these regions, Glu34 and Tyr44 were found to be required for the initial binding of FAD. By comparing sequences with enzymes in the oxidoreductase family, we now have found an additional FAD-binding site in MAO B (residues 222-227), which is highly conserved across species (human, bovine, and rat). This conserved sequence contains adjacent glycine and aspartate residues (Gly226 and Asp227). Based on the x-ray crystal structures of several oxidoreductases (Eggink, G., Engel, H., Vriend, G., Terpstra, P., and Witholt, B. (1990) J. Mol. Biol. 212, 135-142; Van Driessche, G., Kol, M., Chen, Z.-W., Mathews, F. S., Meyer, T. E., Bartsch, R. G., Cusanovich, M. A., and Van Beeumen, J. J. (1996) Protein Sci. 5, 1753-1764), the Gly residue at the end of a beta-strand facilitates a sharp turn and extends the beta-carbonyl group of Asp to interact with the 3'-hydroxyl group of the ribityl chain of FAD. To assess the hypothesis that Gly226 and Asp227 are involved in FAD binding in MAO B, site-specific mutants that encode substitutions at these positions were prepared and expressed in mammalian COS-7 cells. Our results indicate that Gly226 and the beta-carbonyl group of Asp227 are required for covalent flavinylation and catalytic activity of MAO B, but not for noncovalent binding of FAD. Our studies also reveal that mutagenesis at Glu34 and Tyr44 not only interferes with covalent flavinylation and catalytic activity of MAO B, but also with noncovalent binding of FAD. Based on these collective results, we propose that the coupling of FAD to the MAO B apoenzyme is a multistep process.  相似文献   

11.
We study, by flash kinetic spectrophotometry on the microsecond time scale, the effects of ionic strength and viscosity on the kinetics of oxidative quenching of the triplet state of zinc cytochrome c (3Zncyt) by the wild-type form and the following nine mutants of cupriplastocyanin: Leu12Glu, Leu12Asn, Phe35Tyr, Gln88Glu, Tyr83Phe, Tyr83His, Asp42Asn, Glu43Asn, and the double mutant Glu59Lys/Glu60Gln. The unimolecular rate constants for the quenching reactions within the persistent diprotein complex, which predominates at low ionic strengths, and within the transient diprotein complex, which is involved at higher ionic strengths, are equal irrespective of the mutation. Evidently, the two complexes are the same. In both reactions, the rate-limiting step is rearrangement of the diprotein complex from a configuration optimal for docking to the one optimal for the subsequent electron-transfer step, which is fast. We investigate the effects of plastocyanin mutations on this rearrangement, which gates the overall electron-transfer reaction. Conversion of the carboxylate anions into amide groups in the lower acidic cluster (residues 42 and 43), replacement of Tyr83 with other aromatic residues, and mutations in the hydrophobic patch in plastocyanin do not significantly affect the rearrangement. Conversion of a pair of carboxylate anions into a cationic and a neutral residue in the upper acidic cluster (residues 59 and 60) impedes the rearrangement. Creation of an anion at position 88, between the upper acidic cluster and the hydrophobic patch, facilitates the rearrangement. The rate constant for the rearrangement smoothly decreases as the solution viscosity increases, irrespective of the mutation. Fittings of this dependence to the modified Kramers's equation and to an empirical equation show that zinc cytochrome c follows the same trajectory on the surfaces of all the plastocyanin mutants but that the obstacles along the way vary as mutations alter the electrostatic potential. Mutations that affect protein association (i.e., change the binding constant) do not necessarily affect the reaction between the associated proteins (i.e., the rate constant) and vice versa. All of the kinetic and thermodynamic effects and noneffects of mutations consistently indicate that in the protein rearrangement the basic patch of zinc cytochrome c moves from a position between the two acidic clusters to a position at or near the upper acidic cluster.  相似文献   

12.
A hypothetical model for electron transfer complex between cytochrome c3 and the flavodoxin from the sulfate-reducing bacteria Desulfovibrio vulgaris has been proposed, based on electrostatic potential field calculations and NMR data [Stewart, D. E., LeGall, J. , Moura, I., Moura, J. J. G., Peck, H. D., Jr., Xavier, A. V., Weiner, P. K., & Wampler, J. E. (1988) Biochemistry 27, 2444-2450]. This modeled complex relies primarily on the formation of five ion pairs between lysine residues of the cytochrome and acidic residues surrounding the flavin mononucleotide cofactor of the flavodoxin. In this study, the role of several acidic residues of the flavodoxin in the formation of this complex and in electron transfer between these two proteins was evaluated. A total of 17 flavodoxin mutants were studied in which 10 acidic amino acids--Asp62, Asp63, Glu66, Asp69, Asp70, Asp95, Glu99, Asp106, Asp127, and Asp129--had been permanently neutralized either individually or in various combinations by substitution with their amide amino acid equivalent (i.e., asparate to asparagine, glutamate to glutamine) through site-directed mutagenesis. The kinetic data for the transfer of electrons from reduced cytochrome c3 to the various flavodoxin mutants do not conform well to a simple bimolecular mechanism involving the formation of an intermediate electron transfer complex. Instead, a minimal electron transfer mechanism is proposed in which an initial complex is formed that is stabilized by intermolecular electrostatic interactions but is relatively inefficient in terms of electron transfer. This step is followed by a rate-limiting reorganization of that complex leading to efficient electron transfer. The apparent rate of this reorganization step was enhanced by the disruption of the initial electrostatic interactions through the neutralization of certain acidic amino acid residues leading to faster overall observed electron transfer rates at low ionic strengths. Of the five acidic residues involved in ion pairing in the modeled complex proposed by Stewart et al. (1988), the kinetic data strongly implicate Asp62, Glu66, and Asp95 in the formation of the electrostatic interactions that control electron transfer. Less certainty is provided by this study for the involvement of Asp69 and Asp129, although the data do not exclude their participation. It was not possible to determine whether the modeled complex represents the optimal configuration for electron transfer obtained after the reorganization step or actually represents the initial complex. The data do provide evidence for the importance of electrostatic interactions in electron transfer between these two proteins and for the existence of alternative binding modes involving acidic residues on the surface of the flavodoxin other than those proposed in that model.  相似文献   

13.
The catalytic rate of four single and three double mutants of Xenopus laevis Cu,Zn superoxide dismutase B, neutralized at Lys120, Asp130, Glu131, and Lys134, has been determined by pulse radiolysis as a function of ionic strength. Neutralization of Glu131 increases the catalytic rate by 80% at low ionic strength, but the effect is reduced to 50% at physiological ionic strength. The rate is unperturbed upon neutralization of Asp130, while neutralization of either of the two lysines drastically decreases the enzyme activity. The Lys120Leu-Lys134Thr and Lys134Thr-Asp130Gln double mutations have an additive and a compensative effect, respectively, on the activity values, while neutralization of the Glu131-Lys134 pair, which also has a compensative effect, gives rise to a faster enzyme at any ionic strength value. The effects observed in the single Asp130Gln and Lys120Leu mutants differ from those reported on human or bovine enzymes [Getzoff et al. (1992) Nature (London) 358, 347-351; Sines et al. (1990) Biochemistry 29, 9403-9412], indicating that some residues occupying the same position in the linear sequence of different Cu,Zn superoxide dismutases have a different functional weight. Our results also suggest that the strategy of multiple charge mutation may be a promising approach in order to increase the catalytic rate of Cu,Zn SODs independently of ionic strength.  相似文献   

14.
To identify the cytochrome b5 residues responsible for the electrostatic interaction with NADH-cytochrome b5 reductase (b5R), we prepared and characterized the cytochrome b5 mutants in which Glu41, Glu42, Glu63, Asp70, and Glu73 were replaced by Ala, utilizing site-directed mutagenesis and the expression system for cytochrome b5 in Escherichia coli. Apparent Km values of the wild type b5R for Glu42Ala cytochrome b5 and Asp70Ala cytochrome b5 were approximately three-fold and six-fold higher than that for the wild type cytochrome b5, respectively, while the kcat values for those mutants were not remarkably affected. In contrast, Glu41Ala, Glu63Ala, and Glu73Ala cytochrome b5 showed almost the same kinetic properties as the wild type cytochrome b5. Furthermore, kinetic studies on combinations of the cytochrome b5 and b5R mutants suggested the interaction between Glu42 and Asp70 of cytochrome b5 and Lys125 and Lys41 of b5R, respectively, in the reaction.  相似文献   

15.
Glutamate mutase is one of a group of adenosylcobalamin-dependent enzymes that catalyze unusual isomerizations that proceed through the formation of radical intermediates. It shares a structurally similar cobalamin-binding domain with methylcobalamin-dependent methionine synthase. In particular, both proteins contain the "DXHXXG" cobalamin-binding motif, in which the histidine provides the axial ligand to cobalt. The effects of mutating the conserved histidine and aspartate residues in methionine synthase have recently been described [Jarrett, J. T., Amaratunga, M., Drennan, C. L., Scholten, J. D., Sands, R. H., Ludwig, M. L., & Matthews, R. G. (1996) Biochemistry 35, 2464-2475]. Here, we describe how similar mutations in the "DXHXXG" motif of glutamate mutase affect coenzyme binding and catalysis in an adenosylcobalamin-dependent reaction. The mutations made in the MutS subunit of glutamate mutase were His16Gly, His16Gln, Asp14Asn, Asp14Glu, and Asp14Ala. All the mutations affect, in varying degrees, the rate of catalysis, the affinity of the protein for the coenzyme, and the coordination of cobalt. Mutations of either Asp14 or His16 decrease k(cat) by 1000-fold, and whereas cob(II)alamin accumulates as an intermediate in the wild-type enzyme, it does not accumulate in the mutants, suggesting the rate-determining step is altered. The apparent Kd for adenosylcobalamin is raised by about 50-fold when His16 is mutated and by 5-10-fold when Asp16 is mutated. There are extensive differences between the UV-visible spectra of wild-type and mutant holoenzymes, indicating that the mutant enzymes coordinate cobalt less well. Overall, the properties of these mutants differ quite markedly from those observed when similar mutations were introduced into methionine synthase.  相似文献   

16.
To investigate the role of the 17 residues long presequence (p17) in the transport of the precursor of yeast API (pAPI) from the cytosol to the vacuole we have studied the effects of point mutations upon its conformation and on the process of transport. 1H NMR analysis of p17 indicates that in aqueous solution 26% of the molecules have the 4-12 segment folded into an helix. The hydrophobic environment provided by SDS micelles promotes the folding of 54% of the p17 molecules into a 5-16 amphipathic alpha-helix. Both Schiffer-Edmunson helical wheel analysis of segment 4-12 and residue hydrophobic moments calculated considering all possible side-chain orientations between 80 and 120 degrees, indicate the amphipathic character of the helixes assembled in water and detergent. Charge interactions between the dipole pairs N-Glu2Glu3 and C-Lys12Lys13 are essential for helix stability and condition pAPI transport. Substitution of either Pro2Pro3 or Lys2Lys3 for Glu2Glu3, results in moderate destabilization of the helix, decreases protein targeting to the vacuolar membrane and partly inhibits translocation of the protein to the vacuolar lumen. Replacement of either Pro12Pro13 or Glu12Glu13 for Lys12Lys13, causes a major disruption of the helix, decreases protein targeting and blocks completely the translocation of the protein to the vacuolar lumen. Replacement of Gly7 for Ile7, a substitution which is known to destabilize alpha-helixes in peptides and proteins as a result of the peptide bond to the solvent at Gly residues, produces similar effects as the substitutions for the K12K13 pair. The effects of Gly7 on helix stability and protein transport are partly reversed by introduction of Asp residues at positions 2 and 3 and Ala at position 4. Replacements such as Arg2 for Glu2, or Arg6 for Glu6, which change the net and local charges of the presequence without altering its conformation, have no effect on the protein transport. These results provide direct evidence of the involvement of the presequence in the transport of pAPI from the cytosol to the vacuole. They show that folding of the pAPI presequence is conditioned by the physical/chemical properties of the environment and is critical for targeting the protein to the vacuolar membrane and for its translocation to the vacuolar lumen.  相似文献   

17.
The functional roles of Asp804 and Asp808, located in the sixth transmembrane segment of the Na,K-ATPase alpha subunit, were examined. Nonconservative replacement of these residues yielded enzymes unable to support cell viability. Only the conservative substitution, Ala808 --> Glu, was able to maintain the essential cation gradients (Van Huysse, J. W., Kuntzweiler, T. A., and Lingrel, J. B (1996) FEBS Lett. 389, 179-185). Asp804 and Asp808 were replaced by Ala, Asn, and Glu in the sheep alpha1 subunit and expressed in a mouse cell line where [3H]ouabain binding was utilized to probe the exogenous proteins. All of the heterologous proteins were targeted into the plasma membrane, bound ouabain and nucleotides, and adopted E1Na, E1ATP, and E2P conformations. K+ competition of ouabain binding to sheep alpha1 and Asp808 --> Glu enzymes displayed IC50 values of 4.11 mM (nHill = 1.4) and 23.8 mM (nHill = 1.6), respectively. All other substituted proteins lacked this K+-ouabain antagonism, e.g. 150 mM KCl did not inhibit ouabain binding. Na+ antagonized ouabain binding to all the expressed isoforms, however, the proteins carrying nonconservative substitutions displayed reduced Hill coefficients (nHill 相似文献   

18.
Cholinephosphotransferase (EC 2.7.8.2) catalyzes the formation of a phosphoester bond via the transfer of a phosphocholine moiety from CDP-choline to diacylglycerol forming phosphatidylcholine and releasing CMP. A motif, Asp113-Gly114-(X)2-Ala117-Arg118-(X)8-Gly127+ ++-(X)3-Asp131-(X)3-Asp135, located within the CDP-choline binding region of Saccharomyces cerevisiae cholinephosphotransferase (CPT1 ?/Author: Please confirm that a gene is meant here.) is also found in several other phospholipid synthesizing enzymes that catalyze the formation of a phosphoester bond utilizing a CDP-alcohol and a second alcohol as substrates. To determine if this motif is diagnostic of the above reaction type scanning alanine mutagenesis of the conserved residues within S. cerevisiae cholinephosphotransferase was performed. Enzyme activity was assessed in vitro using a mixed micelle enzyme assay and in vivo by determining the ability of the mutant enzymes to restore phosphatidylcholine synthesis from radiolabeled choline in an S. cerevisiae strain devoid of endogenous cholinephosphotransferase activity. Alanine mutants of Gly114, Gly127, Asp131, and Asp135 were inactive; mutants, Ala117 and Arg118 displayed reduced enzyme activity, and Asp113 displayed wild type activity. The analysis described is the first molecular characterization of a CDP-alcohol phosphotransferase motif and results predict a catalytic role utilizing a general base reaction proceeding through Asp131 or Asp135 via a direct nucleophilic attack of the hydroxyl of diacylglyerol on the phosphoester bond of CDP-choline that does not proceed via an enzyme bound intermediate. Residues Ala117 and Arg118 do not participate directly in catalysis but are likely involved in substrate binding or positioning with Arg118 predicted to associate with a phosphate moiety of CDP-choline.  相似文献   

19.
20.
Qy-excitation resonance Raman (RR) studies are reported for a series of Rhodobacter capsulatus reaction centers (RCs) containing mutations at L-polypeptide residue 121 near the photoactive bacteriopheophytin (BPhL). The studies focus on the electronic/structural perturbations of BPhL induced by replacing the native Phe with an Asp residue. Earlier work has shown that the electron-transfer properties of F(L121)D RCs are closely related to those of RCs in which BPhL is replaced by bacteriochlorophyll (BChl) (beta-type RCs) or by pheophytin. In addition to the F(L121)D single mutant, RR studies were performed on the F(L121)D/E(L104)L double mutant, which additionally removes the hydrogen bond between BPhL and the native Glu L104 residue. The vibrational signatures of BPhL in the single and double mutants containing Asp L121 are compared with one another and with those of BPhL in both wild-type and F(L121)L RCs. The replacement of the aromatic Phe residue with Leu has no discernible effect on the vibrational properties of BPhL, a finding in concert with the previously reported absence of an effect of the mutation on the electron-transfer characteristics of the RC. In contrast, replacement of Phe with Asp significantly perturbs the vibrational characteristics of BPhL, and in a manner most consistent with Asp L121 being deprotonated and negatively charged. The negative charge of the carboxyl group of Asp L121 interacts with the pi-electron system of BPhL in a relatively nonspecific fashion, diminishing the contribution of charge-separated resonance forms of the C9-keto group to the electronic structure of the cofactor. The presence of a negative charge near BPhL is consistent with the known photochemistry of F(L121)D RCs, which indicates that the free energy of P+BPhL- is substantially higher than in wild-type RCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号