首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perfect linear-phase two-channel QMF banks require the use of finite impulse response (FIR) analysis and synthesis filters. Although they are less expensive and yield superior stopband characteristics, perfect linear phase cannot be achieved with stable infinite impulse response (IIR) filters. Thus, IIR designs usually incorporate a postprocessing equalizer that is optimized to reduce the phase distortion of the entire filter bank. However, the analysis and synthesis filters of such an IIR filter bank are not linear phase. In this paper, a computationally simple method to obtain IIR analysis and synthesis filters that possess negligible phase distortion is presented. The method is based on first applying the balanced reduction procedure to obtain nearly allpass IIR polyphase components and then approximating these with perfect allpass IIR polyphase components. The resulting IIR designs already have only negligible phase distortion. However, if required, further improvement may be achieved through optimization of the filter parameters. For this purpose, a suitable objective function is presented. Bounds for the magnitude and phase errors of the designs are also derived. Design examples indicate that the derived IIR filter banks are more efficient in terms of computational complexity than the FIR prototypes and perfect reconstruction FIR filter banks. Although the PR FIR filter banks when implemented with the one-multiplier lattice structure and IIR filter banks are comparable in terms of computational complexity, the former is very sensitive to coefficient quantization effects  相似文献   

2.
This paper studies the H2 optimal deconvolution problem for periodic finite impulse response (FIR) and infinite impulse response (IIR) channels. It shows that the H2 norm of a periodic filter can be directly quantified in terms of periodic system matrices and linear matrix inequalities (LMIs) without resorting to the commonly used lifting technique. The optimal signal reconstruction problem is then formulated as an optimization problem subject to a set of matrix inequality constraints. Under this framework, the optimization of both the FIR and IIR periodic deconvolution filters can be made convex, solved using the interior point method, and computed by using the Matlab LMI Toolbox. The robust deconvolution problem for periodic FIR and IIR channels with polytopic uncertainties are further formulated and solved, also by convex optimization and the LMIs. Compared with the lifting approach to the design of periodic filters, the proposed approach is simpler yet more powerful in dealing with multiobjective deconvolution problems and channel uncertainties, especially for IIR deconvolution filter design. The obtained solutions are applied to the design of an optimal filterbank yielding satisfactory performance  相似文献   

3.
The use of fractional delay to control the magnitudes and phases of integrators and differentiators has been addressed. Integrators and differentiators are the basic building blocks of many systems. Often applications in controls, wave-shaping, oscillators and communications require a constant 90deg phase for differentiators and -90deg phase for integrators. When the design neglects the phase, a phase equaliser is often needed to compensate for the phase error or a phase lock loop should be added. Applications to the first-order, Al-Alaoui integrator and differentiator are presented. A fractional delay is added to the integrator leading to an almost constant phase response of -90deg. Doubling the sampling rate improves the magnitude response. Combining the two actions improves both the magnitude and phase responses. The same approach is applied to the differentiator, with a fractional sample advance leading to an almost constant phase response of 90deg. The advance is, in fact, realised as the ratio of two delays. Filters approximating the fractional delay, the finite impulse response (FIR) Lagrange interpolator filters and the Thiran allpass infinite impulse response (IIR) filters are employed. Additionally, a new hybrid filter, a combination of the FIR Lagrange interpolator filter and the Thiran allpass IIR filter, is proposed. Methods to reduce the approximation error are discussed.  相似文献   

4.
This letter proposes a finite impulse response (FIR) channel estimation filter that has robustness against the channel mismatch due to the FIR structure. The channel impulse response is described with a complex state space model and then estimated from received data on the recent time interval. Numerical results show that the FIR channel estimation filter can provide more robust performance than conventional Kalman IIR filters when channel model parameters are not correct.  相似文献   

5.
This paper presents a method for the frequency domain design of infinite impulse response (IIR) digital filters. The proposed method designs filters approximating prescribed magnitude and phase responses. IIR filters of this kind can have approximately linear-phase responses in their passbands, or they can equalize magnitude and phase responses of given systems. In many cases, these filters can be implemented with less memory and with fewer computations per output sample than equivalent finite impulse response (FIR) digital filters. An important feature of the proposed method is the possibility to specify a maximum radius for the poles of the designed rational transfer function. Consequently, stability can be guaranteed, and undesired effects of implementations using fixed-point arithmetic can be alleviated by restricting the poles to keep a prescribed distance from the unit circle. This is achieved by applying Rouche's theorem in the proposed design algorithm. We motivate the use of IIR filters with an unequal number of poles and zeros outside the origin of the complex plane. In order to satisfy simultaneous specifications on magnitude and phase responses, it is advantageous to use IIR filters with only a few poles outside the origin of the z-plane and an arbitrary number of zeros. Filters of this type are a compromise between IIR filters with optimum magnitude responses and phase-approximating FIR filters. We use design examples to compare filters designed by the proposed method to those obtained by other methods. In addition, we compare the proposed general IIR filters with other popular more specialized structures such as FIR filters and cascaded systems consisting of frequency-selective IIR filters and phase-equalizing allpass filters  相似文献   

6.
This paper introduces two classes of cosine-modulated causal and stable filter banks (FBs) with near perfect reconstruction (NPR) and low implementation complexity. Both classes have the same infinite-length impulse response (IIR) analysis FB but different synthesis FBs utilizing IIR and finite-length impulse response (FIR) filters, respectively. The two classes are preferable for different types of specifications. The IIR/FIR FBs are preferred if small phase errors relative to the magnitude error are desired, and vice versa. The paper provides systematic design procedures so that PR can be approximated as closely as desired. It is demonstrated through several examples that the proposed FB classes, depending on the specification, can have a lower implementation complexity compared to existing FIR and IIR cosine-modulated FBs (CMFBs). The price to pay for the reduced complexity is generally an increased delay. Furthermore, two additional attractive features of the proposed FBs are that they are asymmetric in the sense that one of the analysis and synthesis banks has a lower computational complexity compared to the other, which can be beneficial in some applications, and that the number of distinct coefficients is small, which facilitates the design of FBs with large numbers of channels.  相似文献   

7.
This paper presents two-step design methodologies and performance analyses of finite-impulse response (FIR), allpass, and infinite-impulse response (IIR) variable fractional delay (VFD) digital filters. In the first step, a set of fractional delay (FD) filters are designed. In the second step, these FD filter coefficients are approximated by polynomial functions of FD. The FIR FD filter design problem is formulated in the peak-constrained weighted least-squares (PCWLS) sense and solved by the projected least-squares (PLS) algorithm. For the allpass and IIR FD filters, the design problem is nonconvex and a global solution is difficult to obtain. The allpass FD filters are directly designed as a linearly constrained quadratic programming problem and solved using the PLS algorithm. For IIR FD filters, the fixed denominator is obtained by model reduction of a time-domain average FIR filter. The remaining numerators of the IIR FD filters are designed by solving linear equations derived from the orthogonality principle. Analyses on the relative performances indicate that the IIR VFD filter with a low-order fixed denominator offers a combination of the following desirable properties including small number of denominator coefficients, lowest group delay, easily achievable stable design, avoidance of transients due to nonvariable denominator coefficients, and good overall magnitude and group delay performances especially for high passband cutoff frequency ( ges 0.9pi) . Filter examples covering three adjacent ranges of wideband cutoff frequencies [0.95, 0.925, 0.9], [0.875, 0.85, 0.825], and [0.8, 0.775, 0.75] are given to illustrate the design methodologies and the relative performances of the proposed methods.  相似文献   

8.
The problem of splitting the spectrum of a digital signal by using nonuniform infinite impulse response (IIR) filter banks is addressed. Near perfect reconstruction (NPR) is considered. The method uses the modulation of different IIR prototypes. The cancellation of the main aliasing components constrains the prototypes to be dependent on each other. By using this approach, linear-phase prototypes are needed, and noncausal filtering is required. Numerical examples of filter bank design are given, and the computational complexity is compared with the finite impulse response (FIR) case  相似文献   

9.
An efficient general-purpose optimization approach is proposed for designing two-channel finite impulse response (FIR) filterbanks. This technique can be used for optimizing two-channel FIR filterbanks in all alias-free cases proposed in the literature. The generalized problem is to minimize the maximum of the stopband energies of the two analysis filters subject to the given passband and transition band constraints and the given allowable reconstruction error. Therefore, in addition to the perfect-reconstruction filterbanks, nearly perfect-reconstruction banks can be optimized in a controlled manner. The optimization is carried out in two steps. In the first step, for the selected type of the filterbank, a good starting-point filterbank for further optimization is generated using an existing design scheme. The second step involves optimizing the filterbank with the aid of a modified Dutta-Vidyasagar (1977) algorithm. Several examples are included, illustrating the efficiency and the flexibility of the proposed approach.  相似文献   

10.
Bit-level systolic architectures based on an inner-product computation scheme for finite-impulse response (FIR) and infinite-impulse-response (IIR) digital are presented. The FIR filter structure is optimized in the sense that for a given clock rate, both the utilization efficiency and average throughput are maximized. The IIR filter structure has approximately the same utilization efficiency and throughput rate as previous related techniques for processing a single data stream (channel), but it allows two data streams to be processed concurrently to double the performance. This feature makes the IIR system attractive for use in applications where multiple filtering and particularly bandpass analysis are required  相似文献   

11.
For pt.I see ibid., vol.47, no.7, p.1988-2006 (1999). Transmitter redundancy introduced using finite impulse response (FIR) filterbank precoders offers a unifying framework for single- and multiuser transmissions. With minimal rate reduction, FIR filterbank transmitters with trailing zeros allow for perfect (in the absence of noise) equalization of FIR channels with FIR zero-forcing equalizer filterbanks, irrespective of the input color and the channel zero locations. Exploiting this simple form of redundancy, blind channel estimators, block synchronizers, and direct self-recovering equalizing filterbanks are derived in this paper. The resulting algorithms are computationally simple, require small data sizes, can be implemented online, and remain consistent (after appropriate modifications), even at low SNR colored noise. Simulations illustrate applications to blind equalization of downlink CDMA transmissions, multicarrier modulations through channels with deep fades, and superior performance relative to CMA and existing output diversity techniques relying on multiple antennas and fractional sampling  相似文献   

12.
The design of two-channel linear-phase nonuniform-division filter (NDF) banks constructed by infinite impulse response (IIR) digital allpass filters (DAFs) in the sense of L/sub /spl infin// error criteria is considered. First, the theory of two-channel NDF bank structures using two IIR DAFs is developed. Then, the design problem is appropriately formulated to result in a simple optimization problem. Utilizing a variant of Karmarkar's algorithm, we can efficiently solve the optimization problem through a frequency sampling and iterative approximation method to find the coefficients for the IIR DAFs. The resulting two-channel NDF banks can possess approximately linear-phase response without magnitude distortion. The effectiveness of the proposed technique is achieved by forming an appropriate Chebyshev approximation of a desired phase response and then to find its solution from a linear subspace in a few iterations. Several simulation examples are presented for illustration and comparison.  相似文献   

13.
Discrete multitone modulation transceivers (DMTs) have been shown to be very useful for data transmission over frequency-selective channels. The DMT scheme is realized by a transceiver that divides the channel into subbands. The efficiency of the scheme depends on the frequency selectivity of the transmitting and receiving filters. The receiving filters with good stopband attenuation are also desired for combating narrowband noise. The filterbank transceiver or discrete wavelet multitone (DWMT) system has been proposed as an implementation of the DMT transceiver that has better frequency band separation, but usually, intersymbol interference (ISI) cannot be completely cancelled in these filterbank transceivers, and additional equalization is required. We show how to use over interpolated filterbanks to design ISI-free FIR transceivers. A finite impulse response (FIR) transceiver with good frequency selectivity can be designed, as demonstrated by the design examples  相似文献   

14.
We propose a new allpass-based structure for the IIR Mth-and 2Mth-band filters. These filters consist of M allpass filters and an interpolation filter (sum of two allpasses). Consequently, the proposed structure is very efficient in implementation. By choosing the allpass phase appropriately, the resulting phase response of the IIR Mth-band filter becomes approximately linear. An example is designed and compared with FIR Mth-band filters  相似文献   

15.
A method has already been reported by the author and others for synthesizing coherent two-port lattice-form optical delay-line circuits which have the same filter characteristics as finite impulse response (FIR) digital filters. This paper proposes a two-port circuit configuration with ring waveguides which can realize the same filter characteristics as infinite impulse response (IIR) digital filters. It also describes a synthesis method for realizing arbitrary IIR filter characteristics with the circuit configuration. This method is based on scattering matrix factorization. Some synthesis examples are demonstrated including an elliptic filter, a Butterworth filter, an optical filter with maximally flat group-delay characteristics, a group-delay dispersion equalizer, and a multichannel selector  相似文献   

16.
Digital infinite impulse response (IIR) filtering is proposed as a means for compensating chromatic dispersion in homodyne-detected optical transmission systems with subsequent digital signal processing. Compared to finite impulse response (FIR) filtering, IIR filtering achieves dispersion compensation (DC) using a significantly smaller number of taps. DC of 80 and 160 km in a 10-Gb/s binary phase-shift-keying is experimentally compared for the two filtering schemes. IIR filtering can achieve performance similar to the FIR filtering scheme.  相似文献   

17.
We show that a near perfect reconstruction (NPR) M-channel filterbank with a diagonal system inserted between the analysis and synthesis filterbanks may be used to decompose a finite impulse response (FIR) system of order L into M complex subband components, each of order L/K, where K is the downsampling rate. This decomposition is at the expense of using complex arithmetic for the subband processing. The theory surrounding the proposed filterbank structure leads to a new understanding of subbanded adaptive filtering implementations. It also leads naturally to a delayless subbanded adaptive filter scheme. Using conditions on the analysis and synthesis filters, the formulas for the subband components and their respective properties are developed. Simulation results for an acoustic echo cancellation (AEC) example are given to support the developed theory.  相似文献   

18.
Different algorithms are evaluated and optimizations are performed to obtain a filterbank for subband coding of images especially suited for very large scale integration (VLSI) implementation. Based on a filterbank consisting of two finite impulse response (FIR) filters combined with an 8-point discrete cosine transform (DCT), we investigate how the quantization of filter coefficients and twiddle factors in different algorithms affects the quality of the filterbank. It is found that a DCT based on a Stasinksi (1989) algorithm with twiddle factors of only 5 b together with FIR filter coefficients of 10 b gives a filterbank with high coding gain, no blocking artifacts, and limited ringing. The VLSI complexity is comparable to that of DCT transforms.  相似文献   

19.
The advantage of infinite-impulse response (IIR) filters over finite-impulse response (FIR) ones is that the former require a much lower order (much fewer multipliers and adders) to obtain the desired response specifications. However, in contrast with well-developed FIR filter bank design theory, there is no satisfactory methodology for IIR filter bank design. The well-known IIR filters are mostly derived by rather heuristic techniques, which work in only narrow design classes. The existing deterministic techniques usually lead to too high order IIR filters and thus cannot be practically used. In this paper, we propose a new method to solve the low-order IIR filter bank design, which is based on tractable linear-matrix inequality (LMI) optimization. Our focus is the quadrature mirror filter bank design, although other IIR filter related problems can be treated and solved in a similar way. The viability of our theoretical development is confirmed by extensive simulation.  相似文献   

20.
Both intersymbol interference (ISI) and multiple-access interference (MAI) are the important issues in code division multiple access (CDMA) multiuser communication systems. The step size of the traditional least-mean-square (LMS) adaptive receivers must be substantially adjusted to overcome the effect due to different channel responses or different numbers of active users. The normalized-LMS (NLMS) algorithm can automatically manipulate the adjustment to avoid the problem just discussed. This paper proposes the symbol-based interference rejection filter with NLMS algorithm and derives both finite impulse response (FIR)- and infinite impulse response (IIR)-type algorithms. We also derive the optimal step sizes and minimum mean-square errors (MSEs) for both the FIR and IIR symbol-based receivers. The complexity of our proposed FIR receiver is lower than that of the conventional chip-based receivers. In addition, it is shown that the bit error rate performance of our proposed symbol-based receivers is superior to conventional one in the simulations. Simulations also show the correctness of our theoretical analysis of minimum MSE. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号