首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a digital redesign methodology of the iterative learning-based decentralized adaptive tracker is proposed to improve the dynamic performance of sampled-data linear large-scale control systems consisting of N interconnected multi-input multi-output subsystems, so that the system output will follow any trajectory which may not be presented by the analytic reference model initially. To overcome the interference of each sub-system and simplify the controller design, the proposed model reference decentralized adaptive control scheme constructs a decoupled well-designed reference model first. Then, according to the well-designed model, this paper develops a digital decentralized adaptive tracker based on the optimal analog control and prediction-based digital redesign technique for the sampled-data large-scale coupling system. In order to enhance the tracking performance of the digital tracker at specified sampling instants, we apply the iterative learning control (ILC) to train the control input via continual learning. As a result, the proposed iterative learning-based decentralized adaptive tracker not only has robust closed-loop decoupled property but also possesses good tracking performance at both transient and steady state. Besides, evolutionary programming is applied to search for a good learning gain to speed up the learning process of ILC.  相似文献   

2.
This paper investigates decentralized output feedback stabilization problem for a class of switched stochastic high-order systems with time-varying state/input delays. With the help of coordinate transformations, a scaling gain is incorporated into the observers and controllers for the nominal system. Based on the homogeneous domination approach and stochastic Lyapunov–Krasovskii stability theorem, it is shown that global asymptotic stability in probability of the closed-loop system can be implemented by tuning the scaling gain. Two examples are given to demonstrate the feasibility of the proposed control method.  相似文献   

3.
The problem of finite-time decentralized neural adaptive constrained control is studied for large-scale nonlinear time-delay systems in the non-affine form. The main features of the considered system are that 1) unknown unmatched time-delay interactions are considered, 2) the couplings among the nested subsystems are involved in uncertain nonlinear systems, 3) based on finite-time stability approach, asymmetric saturation actuators and output constraints are studied in large-scale systems. First, the smooth asymmetric saturation nonlinearity and barrier Lyapunov functions are used to achieve the input and output constraints. Second, the appropriately designed Lyapunov-Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions, and the neural networks are employed to approximate the unknown nonlinearities. Note that, due to unknown time-delay interactions and the couplings among subsystems, the controller design is more meaningful and challenging. At last, based on finite-time stability theory and Lyapunov stability theory, a decentralized adaptive controller is proposed, which decreases the number of learning parameters. It is shown that the designed controller can ensure that all closed-loop signals are bounded and the tracking error converges to a small neighborhood of the origin. The simulation studies are presented to show the effectiveness of the proposed method.  相似文献   

4.
In this paper, we propose a decentralized adaptive control scheme for a class of interconnected strict-feedback nonlinear systems without a priori knowledge of subsystems' control directions. To address this problem, a novel Nussbaum-type function is proposed and a key theorem is drawn which involves quantifying the interconnections of multiple Nussbaum-type functions of the subsystems with different control directions in a single inequality. Global stability of the closed-loop system and asymptotic stabilization of subsystems' output are proved and a simulation example is given to illustrate the effectiveness of the proposed control scheme.  相似文献   

5.
In this paper, an efficient decentralized iterative learning tracker is proposed to improve the dynamic performance of the unknown controllable and observable sampled-data interconnected large-scale state-delay system, which consists of N multi-input multi-output (MIMO) subsystems, with the closed-loop decoupling property. The off-line observer/Kalman filter identification (OKID) method is used to obtain the decentralized linear models for subsystems in the interconnected large-scale system. In order to get over the effect of modeling error on the identified linear model of each subsystem, an improved observer with the high-gain property based on the digital redesign approach is developed to replace the observer identified by OKID. Then, the iterative learning control (ILC) scheme is integrated with the high-gain tracker design for the decentralized models. To significantly reduce the iterative learning epochs, a digital-redesign linear quadratic digital tracker with the high-gain property is proposed as the initial control input of ILC. The high-gain property controllers can suppress uncertain errors such as modeling errors, nonlinear perturbations, and external disturbances (Guo et al., 2000) [18]. Thus, the system output can quickly and accurately track the desired reference in one short time interval after all drastically-changing points of the specified reference input with the closed-loop decoupling property.  相似文献   

6.
针对具有非线性关联作用和时变时滞的一类关联电力大系统,对其进行分散反馈控制。首先把非线性函数变化成子系统状态变量的二次有界不等式形式,然后基于Lyapunov稳定性理论,利用矩阵的Schur补定理及线性矩阵不等式方法,通过构造适当的Lyapunov泛函,得到了使电力系统渐近稳定的时滞无关的充分条件,并作为特例,给出了常...  相似文献   

7.
This paper presents design and realization of a robust decentralized PI controller for regulating the level of a coupled tank system. The proposed controller is designed based on a predefined reference transfer function model in which we adopt a frequency matching of actual and reference models. Realization of control algorithms for a multivariable system is often complicated owing to uncertainties in the process dynamics. In this paper, initially a frequency response fitting model reduction technique is adopted to obtain a First Order Plus Dead Time (FOPDT) model of each higher order decoupled subsystem. Further, using the obtained reduced order model, the proposed robust decentralized PI controller is designed. The stability and performance of the proposed controller are verified by considering multiplicative input and output uncertainties. The performance of the proposed robust decentralized controller has been compared with that of a decentralized PI controller. To validate the performance of the proposed control approach, real-time experimentation is pursed on a Feedback Instrument manufactured coupled tank system.  相似文献   

8.
The design of decentralized controllers for a class of uncertain interconnected nonlinear systems is considered. The uncertainty considered here is time-varying and appears at each subsystem and interconnections. Two control techniques are explored. The first one, namely, the feedback linearization control, involves a known and autonomous nonlinear system. The second one, namely, the robust control, is especially suitable if any uncertainty and/or time-varying factors are involved in the nonlinear dynamics. These two controllers are combined to stabilize a class of large-scale nonlinear uncertain systems. Two decentralized robust controllers, nonadaptive and adaptive, are proposed and those results are proved.  相似文献   

9.
Decentralized control is more suitable for structural control of large-scale structures. In this paper, a new decentralized control technique is proposed based on the linear quadratic Gaussian (LQG) and substructure approaches. A large-scale structure is divided into a set of smaller substructures. Each substructure is controlled by its own local controller with interaction forces at substructural interfaces, which are considered as “unknown external inputs” to the substructure concerned. An algorithm of recursive least squares estimation for the unknown excitation is proposed. A numerical example of the decentralized control of a tall building is studied to illustrate the new proposed algorithm. Simulation results show that the proposed decentralized control provides satisfactory control performance when comparing with the conventional centralized LQG control algorithm and is viable for the future structural control of large-scale structures.  相似文献   

10.
In this paper, the problem of decentralized adaptive neural backstepping control is investigated for high-order stochastic nonlinear systems with unknown interconnected nonlinearity and prescribed performance under arbitrary switchings. For the control of high-order nonlinear interconnected systems, it is assumed that unknown system dynamics and arbitrary switching signals are unknown. First, by utilizing the prescribed performance control (PPC), the prescribed tracking control performance can be ensured, while the requirement for the initial error is removed. Second, at each recursive step, only one adaptive parameter is constructed to overcome the over-parameterization, and RBF neural networks are employed to tackle the difficulties caused by completely unknown system dynamics. At last, based on the common Lyapunov stability method, the decentralized adaptive neural control method is proposed, which decreases the number of learning parameters. It is shown that the designed common controller can ensure that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB), and the prescribed tracking control performance is guaranteed under arbitrary switchings. The simulation results are presented to further illustrate the effectiveness of the proposed control scheme.  相似文献   

11.
Decentralized control is more suitable for structural control of large-scale structures. In this paper, a new decentralized control technique is proposed based on the linear quadratic Gaussian (LQG) and substructure approaches. A large-scale structure is divided into a set of smaller substructures. Each substructure is controlled by its own local controller with interaction forces at substructural interfaces, which are considered as “unknown external inputs” to the substructure concerned. An algorithm of recursive least squares estimation for the unknown excitation is proposed. A numerical example of the decentralized control of a tall building is studied to illustrate the new proposed algorithm. Simulation results show that the proposed decentralized control provides satisfactory control performance when comparing with the conventional centralized LQG control algorithm and is viable for the future structural control of large-scale structures.  相似文献   

12.
A decentralized state estimator is derived for the spatially interconnected systems composed of many subsystems with arbitrary connection relations. An optimization problem on the basis of linear matrix inequality (LMI) is constructed for the computations of improved subsystem parameter matrices. Several computationally effective approaches are derived which efficiently utilize the block-diagonal characteristic of system parameter matrices and the sparseness of subsystem connection matrix. Moreover, this decentralized state estimator is proved to converge to a stable system and obtain a bounded covariance matrix of estimation errors under certain conditions. Numerical simulations show that the obtained decentralized state estimator is attractive in the synthesis of a large-scale networked system.  相似文献   

13.
This paper addresses the problem of output feedback stabilization for a class of time-delay nonholonomic systems. One distinct characteristic or difficulty of this paper is that time-delay exists in polynomial nonlinear growing conditions. Based on input-state-scaling technique, homogeneous domination approach and Lyapunov–Krasovskii theorem, a new output feedback control law which guarantees all the system states converge to the origin is designed. Examples are provided to demonstrate the validness of the proposed approach.  相似文献   

14.
In this paper, the adaptive neural network output-feedback stabilization problem is investigated for a class of stochastic nonlinear strict-feedback systems. The nonlinear terms, which only depend on the system output, are assumed to be completely unknown, and only an NN is employed to compensate for all unknown upper bounding functions, so that the designed controller is more simple than the existing results. It is shown that, based on the backstepping method and the technique of nonlinear observer design, the closed-loop system can be proved to be asymptotically stable in probability. The simulation results demonstrate the effectiveness of the proposed control scheme.  相似文献   

15.
Sadok  Ali Sghaïer  Salwa  Naceur   《ISA transactions》2009,48(4):458-467
In this paper, we investigate the problem of H decentralized tracking control design with a decentralized observer for interconnected nonlinear systems which are characterized by the interconnection of N subsystems. Each subsystem is modeled by a linear constant part perturbed by an additive nonlinearity which is illustrated by the interconnection terms.The proposed feedback control scheme is developed to ensure the asymptotic stability of the augmented system, to reconstruct the non-measurable state variables of each subsystem, to maximize the nonlinearity domain, and to improve the performance of the model reference tracking control by using the H criterion despite the external disturbances.The proposed control approach is formulated in a minimization problem and derived in terms of linear matrix inequalities (LMIs) whose resolution yields the decentralized control and observation gain matrices.The effectiveness of the proposed control scheme is demonstrated through numerical simulations on a power system with three interconnected machines.  相似文献   

16.
This paper investigates the parallel-triggered static output feedback stabilization problem for linear networked control systems. A new parallel-triggered scheme is proposed by using both the relative error and the absolute error information. The scheme can reduce transmission rate while maintaining the global asymptotical stability. The linear parallel-triggered networked control system is modeled as a time-delay system. By employing Lyapunov stability theory, sufficient conditions are established for the closed-loop system to be globally asymptotically stable in terms of linear matrix inequalities. Moreover, a co-design algorithm is developed to obtain both the optimal trigger parameters and the output feedback controller gain in the sense that the transmission rate is minimized. Finally, two examples are given to illustrate the advantages of the proposed scheme.  相似文献   

17.
This paper presents a decentralized PID controller design method for two input two output (TITO) systems with time delay using characteristic ratio assignment (CRA) method. The ability of CRA method to design controller for desired transient response has been explored for TITO systems. The design methodology uses an ideal decoupler to reduce the interaction. Each decoupled subsystem is reduced to first order plus dead time (FOPDT) model to design independent diagonal controllers. Based on specified overshoot and settling time, the controller parameters are computed using CRA method. To verify performance of the proposed controller, two benchmark simulation examples are presented. To demonstrate applicability of the proposed controller, experimentation is performed on real life interacting coupled tank level system.  相似文献   

18.
Model errors in multiple-input multiple-output adaptive controllers for reduction of broadband noise and vibrations may lead to unstable systems or increased error signals. In this paper, a combination of high-authority control (HAC) and low-authority control (LAC) is considered for improved performance in case of such model errors. A digital implementation of a control system is presented in which the HAC (adaptive MIMO control) is implemented on a CPU and in which the LAC (decentralized control) is implemented on a high-speed Field Programmable Gate Array. Experimental results are given which demonstrate that the HAC/LAC combination leads to performance advantages in terms of stabilization under parametric uncertainties and reduction of the error signal.  相似文献   

19.
Automatic guided vehicle in the factory has an important role to advance the flexible manufacturing system. In this paper, we propose a novel object-transportation control algorithm of cooperative AGV systems to apply decentralized control to multiple AGV systems. Each AGV system is under nonholonomic constraints and conveys a common object-transportation in a horizontal plain. Moreover it is shown that cooperative robot systems ensure stability and the velocities of augmented systems convergence to a scaled multiple of each desired velocity field for cooperative AGV systems. Finally, the application of proposed virtual passivity-based decentralized control algorithm via system augmentation is applied to trace a circle. Finally, the simulation and experimental results for the object-transportation by two AGV systems illustrates the validity of the proposed virtual-passivity decentralized control algorithm.  相似文献   

20.
Though many studies are focused on the stabilization of nonlinear systems with time-varying delay, they fail to involve the dynamic regulation without on-line optimization commonly. For this sake, feedback linearization, Lyapunov-Razumikhin theorem and polynomial approximation theorem are employed here to verify that the multi-dimensional Taylor network (MTN) controller can stabilize the single input single output (SISO) nonlinear time-varying delay systems through dynamic regulation of the system output with no need for on-line optimization. Here, the design of the controller is transformed into a convex optimization problem, which is tackled by means of the appropriate optimization method. Like its PD-like controller peers, the MTN controller functions well in eliminating the dependence on the system model. The effectiveness of the proposed approach is demonstrated and confirmed via two examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号