首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Powders of titanium alloy (Ti-6Al-4V) and bioactive glass (45S5) were deposited by flame spraying to fabricate composite porous coatings for potential use in bone fixation implants. Bioactive glass and titanium alloy powder were blended and deposited in various weight fractions under two sets of spray conditions, which produced different levels of porosity. Coatings were characterized with cross-sectional optical microscopy, x-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). Immersion testing in simulated body fluid (SBF) was conducted for 0, 1, 7, and 14 days. Hydroxyapatite (HA) was found on the bioactive glass-alloy composite coatings after 7 days of immersion; no HA was observed after 14 days on the pure titanium alloy control coating. The HA formation on the alloy-bioactive glass composite coating suggests that the addition of bioactive glass to the blend may greatly increase the bioactivity of the coating through enhanced surface mineralization.  相似文献   

2.
In this study, a novel liquid precursor plasma spraying (LPPS) process was used to deposit Si, Mg, CO3 2− substituted hydroxyapatite (HA) coatings (alone and cosubstituted) onto Ti-6Al-4V substrates. Salts of silicon, magnesium, and carbonate elements were directly added into the HA liquid precursor for subsequent plasma spraying. The phase composition, structure, and morphology of all HA coatings were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The results indicated that the trace elements were successfully incorporated into the HA structure and nanostructured coatings were obtained for all doped HA formulations. The incorporation of trace elements into the HA structure reduced its crystallinity, especially when silicon, magnesium and carbonate ions entered simultaneously into the HA structure. FTIR spectra showed that the Si-HA and Mg-HA coatings had decreased intensities in both the O-H and P-O bands and that the CO3 2−-HA coating was mainly a B-type carbonate-substituted HA. The results showed that the LPPS process is an effective and simple method to synthesize trace element substituted biomimetic HA coatings with nanostructure.  相似文献   

3.
目的 通过与大气等离子喷涂和超音速火焰啧涂的对比,研究微束等离子喷涂制备的羟基磷灰石涂层的微观组织特点.方法 以高结晶度的羟基磷灰石粉末为原料,采用三种不同的喷涂方法(微束等离子喷涂、大气等离子喷涂和超音速火焰喷涂),在Ti-6Al-4V基体上制备羟基磷灰石(HA)涂层.利用冷场发射扫描电子显微镜和X射线衍射仪,对三种涂层的形貌、相组成和择优取向进行分析.结果 与大气等离子喷涂及超音速火焰喷涂制备的涂层相比,应用该设备制备的羟基磷灰石涂层表面平整致密,无大量的气孔存在;涂层截面呈典型的层状结构,在近三分之一表面处观察到柱状晶;涂层中仅有少量的非晶相及分解相,结晶度高达90%以上.这些特征均有利于羟基磷灰石涂层在体液环境中的稳定性.结论 比较三种喷涂方法,采用微束等离子喷涂制备的羟基磷灰石涂层致密,结晶度高,杂相少,且存在择优取向的柱状晶.  相似文献   

4.
Development of WC-Co Coatings Deposited by Warm Spray Process   总被引:1,自引:0,他引:1  
The high-velocity oxy-fuel (HVOF) process is commonly used to deposit WC-Co coatings. There are some problems with this process; especially the decomposition and decarburization of WC during spraying make a coating brittle. To suppress such degradation, the warm spray (WS) process was applied to deposit WC-Co coatings, which is capable of controlling the flame temperature in the range of 500-2000 °C. The microstructure and phases of the deposited coatings were characterized by using SEM and XRD, and the mechanical properties such as hardness, fracture toughness, and wear properties were also investigated. WS process successfully suppressed the formation of the detrimental phases such as W2C and W, which are usually observed in HVOF coatings. The WS coatings showed the similar trend of the hardness variation for Co content with a sintered bulk material. Improvement of toughness and wear behavior was also observed in WS coatings.  相似文献   

5.
采用电沉积方法在钛表面制备氧化石墨烯-羟基磷灰石(Graphene oxide/Hydroxyapatite,GO/HA)复合涂层,通过调整GO的浓度,研究GO对所得涂层晶体结构及生物学性能的影响。采用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)仪、傅里叶变换红外光谱(FTIR)、拉曼光谱分析所得涂层的表面形貌和物相构成,用SEM观察涂层表面MG63成骨样细胞生长情况。结果表明,电沉积法可在钛表面制备GO/HA复合涂层,且随GO浓度增加,HA结晶度增加。此外,复合涂层较单纯HA涂层更能促进成骨样细胞早期粘附。  相似文献   

6.
The aim of the present study is to develop a Fe-based metal matrix composite (MMC) coating using high velocity oxy-fuel spraying (HVOF) process. A ledeburitic high alloyed cold work tool steel (X220CrVMo13-4) and NbC with an average size of 2 µm at different volume fractions have been considered as metal matrix and hard particles respectively. MMC coatings were deposited on austenitic stainless substrates and the coatings were subsequently densified by hot isostatic pressing (HIP) with and without encapsulation. Microstructural analysis of the as-sprayed and HIPed coatings were characterized by SEM and XRD methods. Results showed that the feedstock preparation involving fine NbC was an influencing factor on the coating deposition. A relatively homogeneous dispersion of fine NbC up to 30 vol.% in cold work tool steel matrix was possible using optimized HVOF spraying. Besides, HVOF spraying and its subsequent HIP treatment induced significant microstructural and phase changes in the MMC coatings. The study showed the potential of HVOF spraying for the development of steel based MMC coatings and its subsequent densification can be achieved by HIP process with and without encapsulation.  相似文献   

7.
High Velocity Oxy-Fuel (HVOF) has the potential to produce hydroxyapatite (HA; Bio-ceramic) coatings based on its experience with other sprayed ceramic materials. This technique should offer mechanical and biological results comparable to other thermal spraying processes, such as atmospheric plasma thermal spray, currently FDA approved for HA deposition. Deposition of HA via HVOF is a new venture especially using the Sulzer Metco Diamond Jet (DJ) process, and the aim of this article was to establish this technique's potential in providing superior HA coating results compared to the FDA-approved plasma spray technique. In this research, a Design of Experiment (DOE) model was developed to optimize the Sulzer Metco DJ HVOF process for the deposition of HA. In order to select suitable ranges for the production of HA coatings, the parameters were first investigated. Five parameters (factors) were researched over two levels namely: oxygen flow rate, propylene flow rate, air flow rate, spray distance, and powder flow rate. Coating crystallinity and purity were measured at the surface of each sample as the responses to the factors used. The research showed that propylene, air flow rate, spray distance, and powder feed rate had the largest effect on the responses, and the study aimed to find the preferred optimized settings to achieve high crystallinity and purity of percentages of up to 95%. This research found crystallinity and purity values of 93.8 and 99.8%, respectively, for a set of HVOF parameters which showed improvement compared to the crystallinity and purity values of 87.6 and 99.4%, respectively, found using the FDA-approved Sulzer Metco Atmospheric Plasma thermal spray process. Hence, a new technique for HA deposition now exists using the DJ HVOF facility; however, other mechanical and biorelated properties must also be assessed.  相似文献   

8.
HVOF喷涂纳米结构WC-12Co涂层的组织结构分析   总被引:7,自引:3,他引:7  
赵辉  王群  丁彰雄  张云乾 《表面技术》2007,36(4):1-3,14
纳米结构WC-12Co涂层的研究目前已受到了广泛重视,对其组织结构及影响因素的研究有利于提高涂层性能.采用HVOF工艺制备了纳米结构、多峰结构及普通微米结构3种WC-12Co金属陶瓷复合涂层,并采用SEM、XRD等对粉末及涂层的显微形貌、组织结构进行了分析;探讨了粉末在喷涂过程中的氧化脱碳机理,并指出了与之相关的影响因素.结果表明:纳米结构WC-12Co涂层结构致密,孔隙率低,与基体结合状态良好;纳米粉末在喷涂过程中比微米粉末氧化失碳严重,并发生了不同的纳米晶粒的长大;纳米粉末在喷涂过程中的氧化脱碳程度不仅与喷涂工艺有关,还在很大程度上取决于粉末本身的结构特性.  相似文献   

9.
Nanocrystalline NiAl intermetallic powder was prepared by mechanical alloying (MA) of Ni50Al50 powder mixture and then deposited on low carbon steel substrates by high velocity oxy fuel (HVOF) thermal spray technique using two sets of spraying parameters. X-ray diffraction (XRD), scanning electron microscopy (SEM), transition electron microscopy (TEM), differential scanning calorimetry (DSC), and hardness test were used to characterize the prepared powders and coatings. The MA of Ni50Al50 powder mixture led to the formation of NiAl intermetallic compound. The resulting powder particles were three dimensional in nature with irregular morphology and a crystallite size of ~10 nm. This powder was thermally sprayed by HVOF technique to produce coating. The deposited coating had a nanocrystalline structure with low oxide and porosity contents. The hardness of coatings was in the range of 5.40-6.08 GPa, which is higher than that obtained for NiAl coating deposited using conventional powders.  相似文献   

10.
为使AlSi-20%Al/Ni超音速等离子喷涂涂层获得优良的结合性能,采用正交实验法研究了喷涂距离、喷涂电压、喷涂电流等喷涂工艺参数对结合强度的影响。利用X射线衍射、扫描电镜等手段对涂层的相组成和断口形貌进行分析,利用WDW-E100D微机控制式万能拉伸试验机对涂层结合强度进行测试。结果表明:涂层由AlSi和AlNi两相组成,影响AlSi-20%Al/Ni涂层结合强度工艺参数的主次顺序为喷涂距离、喷涂电压、喷涂电流,优化后的工艺参数为主气流量3.2m3/h,喷涂电流为380A,喷涂电压为130V,喷涂距离为90mm,在此参数下制备的涂层组织致密,其结合强度为65.5MPa。  相似文献   

11.
WC-Co-Cr coatings were sprayed by the High Velocity Oxygen Fuel (HVOF) process and characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD) and erosion corrosion tests. Powders with different relative amounts of Co and Cr in the matrix and different powder grain size distributions were examined. At constant spray conditions the powders gave coatings of different quality as regards erosion-corrosion performance. At low erosive conditions the erosion-corrosion resistance increased when increasing Cr-content from 5 to 8.5 wt.%. However, when the erosivity was increased by increasing test velocity, an increase of Cr content from 5 to 8.5 wt.% showed no improvement in coating quality. Powder grain size distribution was found to be an important parameter, strongly affecting the coating quality. Powders with narrow grain size distributions gave coatings of higher quality than powders with wider grain size distributions. A reduction of the heat input during spraying reduced the degree of WC decomposition and improved the coating properties when the spray powder contained a large fraction of small grains.  相似文献   

12.
Tailoring powder characteristics to suit the plasma spray process can alleviate difficulties associated with the preparation of hydroxyapatite (HA) coatings. Commercial HA feedstock normally exhibit an angular morphology and a wide particle size range that present difficulties in powder transport from the powder hopper to the plasma spray gun and in nonuniform melting of the powders in the plasma flame. Hence, combustion flame spheroidized hydroxyapatite (SHA) was used as the feedstock for plasma spraying. Spherical particles within a narrow particle size range are found to be more effective for the plasma spray processes. Results show coatings generated from spheroidized HA powders have unique surface and microstructure characteristics. Scanning electron microscope (SEM) observation of the coating surface revealed well-formed splats that spread and flatten into disc configurations with no disintegration, reflecting adequate melting of the HA in the plasma and subsequent deposition consistency. The surface topography is generally flat with good overlapping of subsequent spreading droplets. Porosity in the form of macropores is substantially reduced. The cross-section microstructure reveals a dense coating comprised of randomly stacked lamellae. The tensile bond strengths of the SHA coatings, phase composition, and characteristics of the coatings generated with different particle sizes (125 to 75 μm, 45 to 75 μm, 20 to 45 μm, and 5 to 20 μm) showed that a high bond strength of ∼16 MPa can be obtained with SHA in the size range from 20 to 45 μm. This can be improved further by a postspray treatment by hot isostatic pressing (HIP). However, larger particle size ranges exhibited higher degrees of crystallinity and relatively higher HA content among the various calcium phosphate phases found in the coatings.  相似文献   

13.
Thermal spray processes are widely used to protect materials and components against wear, corrosion and oxidation. Despite the use of the latest developments of thermal spraying, such as high-velocity oxy-fuel (HVOF) and plasma spraying, these coatings may in certain service conditions show inadequate performance,e.g., due to insufficient bond strength and/or mechanical properties and corrosion resistance inferior to those of corresponding bulk materials. The main cause for a low bond strength in thermalsprayed coatings is the low process temperature, which results only in mechanical bonding. Mechanical and corrosion properties typically inferior to wrought materials are caused by the chemical and structural inhomogeneity of the thermal-sprayed coating material. To overcome the drawbacks of sprayed structures and to markedly improve the coating properties, laser remelting of sprayed coatings was studied in the present work. The coating material was nickel-based superalloy Inconel 625, which contains chromium and molybdenum as the main alloying agents. The coating was prepared by HVOF spraying onto mild steel substrates. High-power continuous wave Nd:YAG laser equipped with large beam optics was used to remelt the HVOF sprayed coating using different levels of power and scanning speed. The coatings as-sprayed and after laser remelting were characterized by optical microscopy and scanning electron microscopy (SEM). Laser remelting resulted in homogenization of the sprayed structure. This strongly improved the performance of the laser-remelted coatings in adhesion, wet corrosion, and high-temperature oxidation testing. The properties of the laser-remelted coatings were compared directly with the properties of as-sprayed HVOF coatings and with plasma-transferred arc (PTA) overlay coatings and wrought Inconel 625 alloy.  相似文献   

14.
采用等离子喷涂技术在医用纯钛基体表面构建出微纳米多级结构钽涂层。利用SEM、EDS和XRD分析微纳米多结构钽涂层的形貌、化学组成和物相组成,并根据ASTM C633-79评价涂层与基底的结合强度;采用牛血清蛋白(BSA)对比研究了钛基钽涂层与医用纯钛对照样表面的蛋白吸附行为。结果表明,在喷涂距离为110 mm、喷涂功率为30 k W时制备的钛基钽涂层具有典型微纳米多级结构特征,且与基体结合强度好、Ta相对含量高;蛋白吸附实验表明钛基钽涂层表面蛋白吸附量均高于医用纯钛对照样,具有良好的蛋白吸附能力。  相似文献   

15.
Calcium phosphate materials such as hydroxyapatite (HA) have biocompatible properties that can promote osteogenesis or new bone formation. Thermal spraying is an economical and effective process for coating the hydroxyapatite onto metal. It has been reported that plasma spraying changes the degree of crystallinity as well as the phase composition of the HA. This article reports the preparation and characterization of HA powders and coatings by two thermal spray processes (plasma and combustion flame) and suggests that the state of the starting powder adversely affects the coating characteristics. The raw HA powders are synthesized through a chemical reaction involving calcium hydroxide and orthophosphoric acid. Phase analysis using an X- ray diffractometer revealed that the synthesized powder consists of predominantly the HA phase. Calcined and crushed HA powders of various size ranges were fed into the plasma jet to produce HA coatings on metallic substrates. In addition, some HA powders were sprayed into distilled water by plasma spraying and combustion flame spraying to study powder melting characteristics. Other samples were plasma sprayed onto a solid rotating target to study atomization and impact behavior. The morphology of the rapidly solidified powders and thermal sprayed coatings were examined by scanning electron microscopy (SEM). An X- ray sedimentation particle size analyzer, laser diffraction particle size analyzer, and image analyzer performed the particle size analysis. Preliminary results indicate that particle cohesion, size range, and thermal treatment in the plasma affect the phase and structure of the as- sprayed coating, and some post- spray treatment may be necessary to produce a dense and adherent coating with the desired biocompatible properties.  相似文献   

16.
羟基磷灰石由于其良好的生物活性,被广泛的用作医用植入体的表面涂层材料.采用微束等离子喷涂(Microplasma Spraying,MPS)I艺在Ti-6Al-4V基体上制备羟基磷灰石涂层,通过扫描电镜(SEM)、X射线衍射(XRD)和傅里叶红外光谱(FTIR)分析了热处理对涂层相组成和表面形貌的影响规律.研究表明:微束等离子喷涂制备的羟基磷灰石涂层在经过热处理后结晶度提高,并且非晶相和杂质相转化成为HA结晶相.同时,羟基和磷酸根的完整性得到了恢复.过高的热处理温度易引起涂层裂纹等缺陷的增加,也容易造成羟基脱离造成HA分解.合理的热处理温度范围为600~700℃,保温时间为3 h.  相似文献   

17.
Nanostructured titania (TiO2) coatings were produced by high-velocity oxyfuel (HVOF) spraying. They were engineered as a possible candidate to replace hydroxyapatite (HA) coatings produced by thermal spray on implants. The HVOF sprayed nanostructured titania coatings exhibited mechanical properties, such as hardness and bond strength, much superior to those of HA thermal spray coatings. In addition to these characteristics, the surface of the nanostructured coatings exhibited regions with nanotextured features originating from the semimolten nanostructured feedstock particles. It is hypothesized that these regions may enhance osteoblast adhesion on the coating by creating a better interaction with adhesion proteins, such as fibronectin, which exhibit dimensions in the order of nanometers. Preliminary osteoblast cell culture demonstrated that this type of HVOF sprayed nanostructured titania coating supported osteoblast cell growth and did not negatively affect cell viability. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

18.
FeAl and Mo–Si–B intermetallic coatings for elevated temperature environmental resistance were prepared using high-velocity oxy-fuel (HVOF) and air plasma spray (APS) techniques. For both coating types, the effect of coating parameters (spray particle velocity and temperature) on the microstructure and physical properties of the coatings was assessed. Fe–24Al (wt%) coatings were prepared using HVOF thermal spraying at spray particle velocities varying from 540 to 700 m/s. Mo–13.4Si–2.6B coatings were prepared using APS at particle velocities of 180 and 350 m/s. Residual stresses in the HVOF FeAl coatings were compressive, while stresses in the APS Mo–Si–B coatings were tensile. In both cases, residual stresses became more compressive with increasing spray particle velocity due to increased peening imparted by the spray particles. The hardness and elastic moduli of FeAl coatings also increased with increasing particle velocity. For Mo–Si–B coatings, plasma spraying at 180 m/s resulted in significant oxidation of the spray particles and conversion of the T1 phase into amorphous silica and -Mo. The T1 phase was retained after spraying at 350 m/s.  相似文献   

19.
The preparation of thermally sprayed, dense, Si3N4-based coatings can be accomplished using composite spray powders with Si3N4 embedded in a complex oxide binder matrix. Powders with excellent processability were developed and produced by agglomeration (spray drying) and sintering. Optimization of the heat transfer into the powder particles was found to be the most decisive factor necessary for the production of dense and well-adhering coatings. In the present work, different thermal spray processes such as detonation gun spraying (DGS), atmospheric plasma spraying (APS) with axial powder injection, and high-velocity oxyfuel spraying (HVOF) were used. The coatings were characterized using optical and scanning electron microscopy (SEM), x-ray diffraction (XRD), and microhardness testing. The wear resistance was tested using a rubber wheel abrasion wear test (ASTM G65). In addition, thermoshock and corrosion resistances were determined. The microstructure and the performance of the best coatings were found to be sufficient, suggesting the technical applicability of this new type of coating.  相似文献   

20.
Recently, there has been considerable interest in producing cermet coatings with nanoscale carbide grains in the size range 50 to 500 nm. In this article, the production of nanoscale TiC grains in a Ni-based alloy matrix by reactive high-velocity oxyfuel (HVOF) spraying of metastable Ni-Ti-C powder is reported. Mechanical alloying of a Ni(Cr) prealloyed powder and Ti and C elemental powders was performed in a planar-type ball mill, and materials were characterized in detail using x-ray diffraction (XRD) and scanning electron micros-copy (SEM). Phase changes were correlated with milling time and other processing conditions. Results show that, by the selection of appropriate conditions, a metastable Ni-Ti-C powder could be obtained with the nominal composition 50wt.%Ni-40wt.%Ti-10wt.%C. Following sieving and classification, powder was produced with a particle size range of −38 to 8 μm, which is suitable for HVOF spraying. Coatings, approximately 250 μm thick, were deposited by HVOF spraying onto mild steel substrates, and the microstructures formed were investigated. XRD showed that a self-propagating high-temperature synthesis (SHS) reaction had occurred in the powder particles during spraying and that the principal phases present in the coating were TiC and a Ni-rich solid solution; small quantities of NiTi, TiO2, and NiTiO3 were also present. SEM revealed that the coatings had a characteristic, splatlike morphology and that TiC formed as a nanoscale dispersion, with a size range of ∼50 to 200 nm, within solidified splats. The microstructures of these reactively sprayed Ni-TiC coatings are briefly compared with those observed in HVOF-sprayed coatings deposited using prereacted SHS powder. The original version of this paper was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Science and Applying the Technology, International Thermal Spray Conference (Orlando, FL), May 5–8, 2003, Basil R. Marple and Christian Moreau, Ed., ASM International, 2003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号