首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel gel-network-coprecipitation process has been developed to prepare ultrafine Cu/ZnO/Al2O3 catalysts for methanol synthesis from CO2 hydrogenation. It is demonstrated that the gel-network-coprecipitation method can allow the preparation of the ultrafine Cu/ZnO/Al2O3 catalysts by homogeneous coprecipitation of the metal nitrate salts in the gel network formed by gelatin solution, which makes the metallic copper in the reduced catalyst exist in much smaller crystallite size and exhibit a much higher metallic copper-specific surface area. The effect of the gel concentration of gelatin on the structure, morphology and catalytic properties of the Cu/ZnO/Al2O3 catalysts for methanol synthesis from hydrogenation of carbon dioxide was investigated. The Cu/ZnO/Al2O3 catalysts prepared by the gel-network-coprecipitation method exhibit a high catalytic activity and selectivity in CO2 hydrogenation to methanol.  相似文献   

2.
The impact of preparation methods on the structure and catalytic behavior of Cu/ZnO/Al2O3 catalysts for H2 production from steam reforming of methanol (SRM) has been reported. The results show that the nanostructured Cu/ZnO/Al2O3 catalyst obtained by a novel gel-coprecipitation of oxalate precursors has a high specific surface area and high component dispersion, exhibiting much higher activity in the SRM reaction as compared to the catalysts prepared by conventional coprecipitation techniques. It is suggested that the superior catalytic performance of the oxalate gel-coprecipitation-derived Cu/ZnO/Al2O3 catalyst could be attributed to the generation of “catalytically active” copper material with a much higher metallic copper specific surface as well as a stronger Cu–Zn interaction due to an easier incorporation of zinc species into CuC2O4 · x H2O precursors as a consequence of isomorphous substitution between copper and zinc in the oxalate gel-precursors.  相似文献   

3.
The Cu/ZnO/Al2O3 catalysts, prepared by co-precipitation method, have been modified by adding small amount of Mn, Mg, Zr, Cr, Ba, W and Ce oxides using design of experiments (1/16 full factorial design). The structure and morphology of catalysts were studied by X-ray diffraction (XRD) and BET. Performance of the prepared catalysts for CO/CO2 hydrogenation to methanol was evaluated by using a stainless steel fixed-bed reactor at 5 MPa and 513 K. The oxide additives were found to influence the catalytic activity, dispersion of Cu, Cu crystallite size, surface composition of catalyst and stability of catalysts during their operations. The results showed that the Mn and Zr promoted catalysts have high performance for methanol synthesis from syngas.  相似文献   

4.
Deactivation of Supported Copper Catalysts for Methanol Synthesis   总被引:1,自引:0,他引:1  
Binary Cu/ZnO and Cu/Al2O3 as well as ternary Cu/ZnO/Al2O3 catalysts were investigated with respect to their catalytic activity and stability in methanol synthesis. In a rapid aging test, activity measurements were carried out in combination with the determination of the specific Cu surface area. A close correlation between the loss of catalytic activity and the decrease in specific Cu surface area was found due to sintering of the Cu particles. Differences in the deactivation behavior and the area-activity relationship of each catalyst system imply that the catalysts should be grouped in different classes.  相似文献   

5.
The addition of B2O3 to a Cu/ZnO/Al2O3 catalyst increased the activity of the catalyst for methanol synthesis after an induction period during the reaction. The stability of the B2O3-containing Cu/ZnO/Al2O3 catalyst was greatly improved by the addition of a small amount of colloidal silica to the catalyst. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Effects of catalyst composition have been studied for Cu/support and Cu/ZnO/supports in methanol synthesis from CO2/H2. A strong effect of support has been observed. Different supports brought about different behavior in temperature-programmed reduction of copper, different copper surface areas, and different catalytic activity and selectivity. It seemed possible to find catalyst supports that might perform better than commercial Cu/ZnO/Al2O3 catalysts. A correlation was observed between catalytic activity and the copper surface area which was varied by using different supports. However, the sup]>orts appeared to influence other catalytic properties as well, for example, the surface oxygen coverage.  相似文献   

7.
A combination of various transient and steady-state kinetic experiments was used to provide evidence for dynamical changes in a Cu/ZnO/Al2O3 catalyst of industrial interest. From these it can be deduced that the reversible structural alterations strongly depend on the reaction conditions as well as on the pretreatment. The pretreatment was found to induce changes in the morphology of the metallic Cu particles to some extent, and surface alloying under more severe reducing conditions.  相似文献   

8.
Cu/ZnO/TiO2 catalysts were prepared via the coprecipitation method. The catalysts were characterized by X-ray diffraction, X-ray photoelectron spectrometry, temperature programmed reduction, and N2 adsorption. The catalytic activity of Cu/ZnO/TiO2 catalyst in gas phase hydrogenation of maleic anhydride in the presence of n-butanol was studied at 235–280 °C and 1 MPa. The conversion of maleic anhydride was more than 95.7% and the selectivity of tetrahydrofuran was up to 92.7%. At the same time, n-butanol was converted to butyraldehyde and butyl butyrate via reactions, namely, dehydrogenation, disproportionation, and esterification. There were two kinds of CuO species present in the calcined Cu/ZnO/TiO2 catalysts. At a lower copper content, the CuO species strongly interacted with ZnO and TiO2; at a higher copper content, both the surface-anchored and bulk CuO species were present. The metallic copper (CuO) produced by the reduction of the surface-anchored CuO species favored the deep hydrogenation of maleic anhydride to tetrahydrofuran. The deep hydrogenation activity of Cu/ZnO/TiO2 catalyst increased with the decrease of crystallite sizes of CuO and the increase of microstrain values. Compensations of reaction heat and H2 in the coupling reaction of maleic anhydride hydrogenation and n-butanol dehydrogenation were distinct.  相似文献   

9.
In order to elucidate the effect of sodium on the activity of ZSM-5 supported metal oxides catalysts (ZnO–Al2O3/ZSM-5 and SnO–Al2O3/ZSM-5) for the transesterification of soybean oil with methanol, ZSM-5 supported metal oxides were prepared with and without sodium hydroxide by impregnation. The metal compositions of the ZSM-5 supported metal oxide catalysts and the metal concentrations dissolved from the catalysts to the methylester phase were measured by SEM-EDS and inductive coupled plasma spectroscopy, respectively. The catalytic activity of ZnO–Al2O3/ZSM-5 and SnO–Al2O3/ZSM-5 containing sodium did not originate from surface metal oxides sites, but from surface sodium sites or dissolved sodium leached from the catalyst surface.  相似文献   

10.
Cu K-absorption edge and EXAFS measurements on binary Cu/ZnO and ternary Cu/ ZnO-Al2O3 catalysts of varying compositions on reduction with hydrogen at 523 K, show the presence of Cu microclusters and a species of Cu1+ dissolved in ZnO apart from metallic Cu and Cu2O. The proportions of different phases critically depend on the heating rate especially for catalysts of higher Cu content. Accordingly, hydrogen reduction with a heating rate of 10 K/min predominantly yields the metal species (>50%), while a slower heating rate of 0.8 K/min enhances the proportion of the Cu1+ species ( 60%). Reduced Cu/ZnO-Al2O3 catalysts show the presence of metallic Cu (upto 20%) mostly in the form of microclusters and Cu1+ in ZnO as the major phase ( 60%). The addition of alumina to the Cu/ZnO catalyst seems to favour the formation of Cu1+/ZnO species.  相似文献   

11.
The effect of preparation methods on the Cu/ZnO/Al2O3 catalyst structure and catalytic activity on liquid glycerol hydrogenolysis to 1,2-propanediol has been investigated. The physicochemical properties of the catalysts were characterized by BET, XRD, TG/DTA, NH3-TPD and TPR. The experimental results showed that the catalyst prepared by an oxalate gel–coprecipitation had the highest activity. At 200 °C and 400 psi hydrogen pressure, the glycerol conversion and 1,2-propanediol selectivity catalyzed by the Cu/ZnO/Al2O3 catalyst prepared via oxalate gel–coprecipitation were 92.3 and 94.5 % respectively. It was found that the 1,2-propanediol selectivity was dependent on hydrogen pressure and the un-desired by-products were mainly due to the side reactions caused by the presence of the intermediate acetol.  相似文献   

12.
For the hydrogenolysis of butyl butyrate into butanol, Cu/ZnO/Al2O3 catalysts are prepared using normal precipitation (NP) and reverse precipitation (RP) methods. The activity trends of NP-series and RP-series catalysts are different as a function of the Cu/Zn ratio. Through several characterization techniques, the major differences between both series of catalyst samples are caused by the high-temperature carbonate (HT-CO3) present in the precursor phase. The butanol productivity of RP-series catalysts is thus found to be associated with the HT-CO3 amount in precursor and calcined samples, while it shows a linear relationship with the copper surface area.  相似文献   

13.
Cu/ZnO/ZrO2 catalysts were prepared by a route of solid-state reaction and tested for the synthesis of methanol from CO2 hydrogenation. The effects of calcination temperature on the physicochemical properties of as-prepared catalysts were investigated by N2 adsorption, XRD, TEM, N2O titration and H2-TPR techniques. The results show that the dispersion of copper species decreases with the increase in calcination temperature. Meanwhile, the phase transformation of zirconia from tetragonal to monoclinic was observed. The highest activity was achieved over the catalyst calcined at 400 °C. This method is a promising alternative for the preparation of highly efficient Cu/ZnO/ZrO2 catalysts.  相似文献   

14.
A composition of Cu/ZnO/Al2O3 catalysts prepared by the impregnation method was optimized for water gas shift reaction (WGSR) coupled with CO oxidation in the reformed gas. The optimum composition of the impregnated catalyst for high WGSR activity was 5 wt.% Cu/5 wt.% ZnO/Al2O3. The optimum loading amounts of Cu and ZnO in the impregnated catalyst were smaller than those in the coprecipitated catalyst. Its catalytic activity above 200 °C was comparable to that of the conventional coprecipitated Cu/ZnO/Al2O3 catalyst. However, the activity of the impregnated Cu/ZnO/Al2O3 catalysts was significantly lowered at 150 °C, whereas no deactivation was observed for the coprecipitated catalyst at the same temperature. It was found that deactivation occurred over impregnated catalysts with H2O and/or O2 in the reaction gas; it prevented CO adsorption on the surface.  相似文献   

15.
The catalytic activities of Cu/MOx (MOx = Al2O3, TiO2, and ZnO) catalysts in the gas‐phase hydrogenolysis of glycerol were studied at 180–300 °C under 0.1 MPa of H2. Cu/MOx (MOx = Al2O3, TiO2, and ZnO) catalysts were prepared by the incipient wetness impregnation method. After reduction, CuO species were converted to metallic copper (Cu0). Cu/Al2O3 catalysts with high acidity, high specific surface areas and small metallic copper size favored the formation of 1,2‐propanediol with a maximum selectivity of 87.9 % at complete conversion of glycerol and a low reaction temperature of 180 °C, and favored the formation of ethylene glycol and monohydric alcohols at high reaction temperature of 300 °C. Cu/TiO2 and Cu/ZnO catalysts exhibited high catalytic activity toward the formation of hydroxyacetone with a selectivity of approx. 90 % in a wide range of reaction temperature.  相似文献   

16.
The effects of the pretreatments of Cu/ZnO-based catalysts prepared by a coprecipitation method on their activities for the water–gas shift reaction at 523K were investigated. The activity of a Cu/ZnO/ZrO2/Al2O3 catalyst for the water–gas shift reaction was less affected by calcination at temperatures ranging from 673-973K and by H2 treatment at 573 or 723K than that of a Cu/ZnO/Al2O3 catalyst. The catalyst activity could be correlated mainly to the Cu surface area of the catalyst.  相似文献   

17.
MgO/Al2O3 and NiO/MgO/Al2O3 solid bases were prepared by mixing method. The samples were characterized by X-ray diffraction (XRD), CO2 temperature-programmed desorption (CO2-TPD) and surface area measurements. After supported sulfonated cobalt phthalocyanine (CoPcS) the catalytic performance of these catalysts was evaluated in the mercaptan oxidation reaction. The effect of Mg/Al mole ratios on activity, crystal structure, basicity and stability in air was discussed. And the mechanism of the effect of NiO was identified. Results show that the base amount of MgO/Al2O3 increases with increasing Mg/Al mole ratio and catalyst with high Mg/Al mole ratio has a higher initial activity. NiO/MgO/Al2O3–CoPcS shows a higher initial activity and a much longer lifetime than MgO/Al2O3–CoPcS. When nickel oxide is doped into the MgO/Al2O3 support more crystal defects are generated, which increases the amount and types of basic sites.  相似文献   

18.

The effect of preparation methods on the Cu/ZnO/Al2O3 catalyst structure and catalytic activity on liquid glycerol hydrogenolysis to 1,2-propanediol has been investigated. The physicochemical properties of the catalysts were characterized by BET, XRD, TG/DTA, NH3-TPD and TPR. The experimental results showed that the catalyst prepared by an oxalate gel–coprecipitation had the highest activity. At 200 °C and 400 psi hydrogen pressure, the glycerol conversion and 1,2-propanediol selectivity catalyzed by the Cu/ZnO/Al2O3 catalyst prepared via oxalate gel–coprecipitation were 92.3 and 94.5 % respectively. It was found that the 1,2-propanediol selectivity was dependent on hydrogen pressure and the un-desired by-products were mainly due to the side reactions caused by the presence of the intermediate acetol.

  相似文献   

19.
In this study, TiO2, ZnO, TiO2/ZnO (Ti/Zn), and TiO2/ZnO/Sep (Ti/Zn/Sep) catalysts have been synthesized using sol–gel and chemical precipitation method. Their photocatalytic performances have been compared using Flumequine (FLQ) antibiotic. X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), scanning electron microscopy (SEM), N2-adsorption, and the determination of a zero point charge has been used to characterize the synthesized catalysts. The degradation studies showed that the catalytic efficiency of Ti/Zn/Sep is higher than that for other catalysts. The operational parameters such as pH, initial FLQ concentration, and catalyst dosage were evaluated. UV–vis and high-resolution mass spectroscopy (HRMS) analyses were used to determine the degradation efficiency and products. ZnO played a major role in the FLQ degradation process, and sepiolite contributed to adsorption of FLQ on the catalyst surface enormously. The catalysts exhibited 11%, 23%, 63%, and 85% degradation efficiency for ZnO, TiO2, Ti/Zn, and Ti/Zn/Sep in the decomposition of FLQ, respectively.  相似文献   

20.
The stability and the activity of Fe2O3/Cr2O3 and ZnO/Cr2O3 catalysts were examined for a reverse-watergas-shift reaction (RWReaction). The initial activities of those catalysts were quite high so that the conversion reached close to equilibrium. The activity of Fe2O3/Cr2O3 catalyst decreased from 33.5 to 29.8% during the RWReaction for 75 h at 873 K with GHSV (ml/gcat · h) of 100,000. Moreover, the coke formation on the Fe2O3/Cr2O3 catalyst caused clogging in the RWReactor of the CAMERE process. On the other hand, the ZnO/Cr2O3 catalyst showed no coke formation and no deactivation for the RWReaction at 873 K with GHSV (ml/gcat · h) of 150,000. The ZnO/Cr2O3 was a good catalyst for the RWReaction of the CAMERE process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号