首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The monodisperse hollow SnO2 (H-SnO2) microspheres were successfully synthesized by the ion exchange method using sulfonated PS microspheres as a template. The structure and morphology were characterized by X-ray diffraction, transmission electron microscopy and high-resolution transmission electron microscopy, which confirms the hollow structure of the products. The H-SnO2 microspheres are composed of numerous SnO2 nanoparticles with a shell thickness of about 13 nm. The monodisperse H-SnO2 microspheres have a high specific surface area of 55.54 m2/g, which improves the gas sensing properties toward ethanol. Gas-sensing measurement results indicate that H-SnO2 microspheres exhibit an excellent sensitivity (103.1) toward 200 ppm ethanol at 260 °C, which is much higher than that (65.8) of SnO2 nanoparticles.  相似文献   

2.
Layered hierarchical porous SnO2 (LHP-SnO2) have been synthesized by a two-step method, in which pure SnO2 nanoparticles(NPs) with the diameter about 3.2 nm were prepared firstly through a hydro-thermal method, and then LHP-SnO2 were prepared by utilizing polystyrene (PS) microspheres as a template and SnO2 NPs as a precursor. The as-prepared sample consisted of porous SnO2 layers, in which each layer presents a three-dimensional random arrangement of macropores with average pore diameter of about 260 nm. The Nitrogen adsorption–desorption analysis implied that the sample was characterized with large surface area of 140.67 m2/g and extensive micropores and mesopores structure. Compared with pure SnO2 NPs, the LHP-SnO2 exhibited an obvious improvement in gas sensing properties. These results indicate that the layered hierarchical porous structure possess potential application in sensing materials.  相似文献   

3.
《Ceramics International》2016,42(14):15889-15896
Well-defined three-dimensional (3D) hierarchical tin dioxide (SnO2) nanoflowers with the size of about 200 nm were successfully synthesized by a simple template-free hydrothermal method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N2 adsorption-desorption analyses were used to characterize the structure and morphology of the products. The as-synthesized full crystalline and large specific surface area SnO2 nanoflowers were assembled by one-dimensional (1D) SnO2 nanorods with sharp tips. A possible self-assembly mechanism for the formation the SnO2 nanoflowers was speculated. Moreover, gas sensing investigation showed the sensor based on SnO2 nanoflowers to exhibit high response and fast response-recovery ability to detect acetone and ethanol at an operating temperature lower than 200 °C. The enhancement of gas sensing properties was attributed to their 3D hierarchical nanostructure, large specific surface area, and small size of the secondary SnO2 nanorods.  相似文献   

4.
We successfully synthesized 13X zeolite using a hydrothermal method. Then, composites of polyaniline (PANI) with 13X zeolite and PANI–13X with platinum were prepared by chemical oxidative polymerization and chemical reduction, respectively. Field emission scanning electron microscopy, X‐ray diffraction, Raman spectroscopy and Brunauer–Emmett–Teller techniques were used to characterize the PANI–Pt and PANI–Pt–13X composites. Further, the electrocatalytic activity towards methanol oxidation of the synthesized catalysts was explored using cyclic voltammetry in 1 mol L?1 CH3OH + 0.5 mol L?1 H2SO4 solution. From the obtained results, PANI–Pt–13X shows superior performance compared to PANI–Pt towards methanol oxidation and electrical conductivity. Hence, the 13X zeolite‐incorporated PANI–Pt composite could be an efficient catalyst for direct methanol fuel cell applications. © 2019 Society of Chemical Industry  相似文献   

5.
Gas sensors made of flame-synthesized Zn-doped γ-Fe2O3 nanoparticles were found to have high sensitivity and high aging resistance. Zinc-doped γ-Fe2O3 nanoparticles and microparticles were synthesized by flame spray pyrolysis (FSP). Gas sensors were fabricated with as-synthesized particles, and with particles that had been annealed. The sensors’ response to acetone vapor and H2 was measured as fabricated, and measured again after the sensors were aged for three days. The sensors made from as-synthesized particles showed a gas sensing sensitivity 20 times higher than the literature value. However, sensors made of microparticles lost their sensing ability after three days of aging; sensors made of nanoparticles retained their gas sensing capability after aging. Sensors made of annealed particles did not have significant gas sensing capabilities. Analysis using the William and Hall method showed that the microstrains decreased significantly in both H2/O2 and H2/Air flame synthesized particles after annealing. The results showed that sensors made of flame-synthesized particles have much higher sensitivity than sensors made of particles previously reported. Especially, sensors made of flame-synthesized nanoparticles are resistant towards aging. This aging resistance may be attributed to the particles’ ability to retain their microstrains.  相似文献   

6.
The activity, selectivity, and methanol tolerance of novel, carbon supported high-metal loading (40 wt.%) Pt/C and Pt3Me/C (Me = Ni, Co) catalysts for the O2 reduction reaction (ORR) were evaluated in model studies under defined mass transport and diffusion conditions, by rotating (ring) disk and by differential electrochemical mass spectrometry. The catalysts were synthesized by the organometallic route, via deposition of pre-formed Pt and Pt3Me pre-cursors followed by their decomposition into metal nanoparticles. Characteristic properties such as particle sizes, particle composition and phase formation, and active surface area, were determined by transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. For comparison, commercial Pt/C catalysts (20 and 40 wt.%, E-Tek, Somerset, NJ, USA) were investigated as well, allowing to evaluate Pt loading effects and, by comparison with the pre-cursor-based catalyst with their much smaller particle sizes (1.7 nm diameter), also particle size effects. Kinetic parameters for the ORR were evaluated; the ORR activities of the bimetallic catalysts and of the synthesized Pt/C catalyst were comparable and similar to that of the high-loading commercial Pt/C catalyst; at typical cathode operation potentials H2O2 formation is negligible for the synthesized catalysts. Due to their lower methanol oxidation activity the bimetallic catalysts show an improved methanol tolerance compared to the commercial Pt/C catalysts. The results indicate that the use of very small particle sizes is a possible way to achieve reasonably good ORR activities at an improved methanol tolerance at DMFC cathode relevant conditions.  相似文献   

7.
Herein, we successfully synthesized the manganese-metal organic framework via hydrothermal route using three kinds of carboxylates as organic ligands and Mn(NO3)2 as a manganese precursor. The morphology and microstructure of the obtained products were characterized by X-ray diffraction, Fourier transformed infrared spectrum, scanning electron microscopy, transition electron microscopy, thermo-gravimetric analysis, differential scanning calorimetry and nitrogen adsorption [i.e. Brunauer–Emmett–Teller (BET) surface area analysis] techniques. Moreover, the effect of organic ligand type and preparation route on morphology and textural properties were investigated. The results showed that each type of used ligands leads to formation of products with specific morphologies and textural properties. Also, the hydrothermal route has significant effect on microstructures and textural properties of obtained products. The SO2 and CO2 gas uptake investigation of synthesized Mn-MOFs exhibited that the products obtained via hydrothermal route have high SO2 and CO2 gas uptake compared to method without using hydrothermal route.  相似文献   

8.
Electrochemical activities and structural features of Pt/Sn catalysts supported by hydrogen-reduced SnO2 nanowires (SnO2NW) are studied, using cyclic voltammetry, CO stripping voltammetry, scanning electron microscopy, and X-ray diffraction analysis. The SnO2NW supports have been grown on a carbon paper which is commercially available for gas diffusion purposes. Partial reduction of SnO2NW raises the CO tolerance of the Pt/Sn catalyst considerably. The zero-valence tin plays a significant role in lowering the oxidation potential of COads. For a carbon paper electrode loaded with 0.1 mg cm−2 Pt and 0.4 mg cm−2 SnO2NW, a conversion of 54% SnO2NW into Sn metal (0.17 mg cm−2) initiates the COads oxidation reaction at 0.08 V (vs. Ag/AgCl), shifts the peak position by 0.21 V, and maximizes the CO tolerance. Further reduction damages the support structure, reduces the surface area, and deteriorates the catalytic activity. The presence of Sn metal enhances the activities of both methanol and ethanol oxidation, with a more pronounced effect on the oxidation current of ethanol whose optimal value is analogous to those of PtSn/C catalysts reported in literature. In comparison with a commercial PtRu/C catalyst, the optimal Pt/Sn/SnO2NW/CP exhibits a somewhat inferior activity toward methanol, and a superior activity toward ethanol oxidation.  相似文献   

9.
Meso-porous SnO2 fibers were synthesized using a solvothermal method with metaplexis fruit as the bio-template. The products were characterized by powder X-ray diffraction, high resolution scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption measurements. Results show that SnO2 fibers present a high specific surface area of 73.665 m2/g and a meso-porous structure with the pore size of 7.821 nm, and the crystal size of SnO2 is about 6.5 ± 0.5 nm. The gas sensing performance of the prepared SnO2 fibers toward several volatile organic compounds was investigated. The results show that the meso-porous SnO2 fibers were highly sensitive and selective to n-butanol.  相似文献   

10.
《Ceramics International》2017,43(5):4112-4118
Hierarchical pore structure nano-sized SnO2 was synthesized using a solvothermal method with SnCl4 as the raw material and grapefruit peel as the bio-template. The products were characterized by powder X-ray diffraction, high resolution scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption measurements. The results show that the SnO2 prepared from the grapefruit peel bio-template consists of many large size (5–20 µm) interconnected pores with a honeycomb structure and nanosized pores (9.46 nm) on the walls of the large pores. The as-prepared SnO2 presented a high specific surface area of 42.98 m2/g and the average crystallite size was about 10±0.5 nm. The gas sensing performance of the prepared material toward several volatile organic compounds was investigated. The results show that the hierarchical pore structure nano-sized SnO2 was highly sensitive and selective to n-butanol, indicating that this material may be a promising candidate for future development as a n-butanol gas sensor.  相似文献   

11.
《Ceramics International》2022,48(14):19978-19989
In this study, we report synthesis of SnO2-rGO and N-doped SnO2-rGO nanohybrids by facile hydrothermal method. The XRD analysis of the synthesized nanohybrids revealed a tetragonal rutile structure of SnO2 lattice.Further structural, chemical, morphological and optical properties of SnO2-rGO and SnO2-NrGO nanohybrids were investigated by Raman, X-Ray Photoelectron spectroscopy, Transmission Electron Microscopy, UV–Vis spectroscopy and Photoluminescence spectroscopy. Furthermore, the gas sensing properties of the synthesized nanohybrids were studied in detail. It was observed that SR2 and SRN2 nanohybrids exhibited superior NO2 sensing response (55.2 and 84.5% respectively) at low operating temperature (120 °C) and low gas concentration (0.5 ppm). Moreover, SR2 and SRN2 also exhibited excellent selectively towards NO2 along with remarkable stability upto 90% over 30 days. This improved performance can be attributed to the synergetic effect of small particle size, high defect concentration and high surface area due to incorporation of SnO2 along with N doping in rGO. Therefore, SR2 and SRN2 can be utilized as effective NO2 gas sensors.  相似文献   

12.
To improve the stability and activity of Pt catalysts for ethanol electro‐oxidation, Pt nanoparticles were selectively deposited on carbon‐nanotubes (CNTs)‐supported‐SnO2 to prepare Pt/SnO2/CNTs and Pt/CNTs was prepared by impregnation method for reference study. X‐ray diffraction (XRD) was used to confirm the crystalline structures of Pt/SnO2/CNTs and Pt/CNTs. The stabilities of Pt/SnO2/CNTs and Pt/CNTs were compared by analyzing the Pt size increase amplitude using transmission electron microscopy (TEM) images recorded before and after cyclic voltammetry (CV) sweeping. The results showed that the Pt size increase amplitude is evidently smaller for Pt/SnO2/CNTs, indicating the higher stability of Pt/SnO2/CNTs. Although both catalysts exhibit degradation of electrochemical active surface area (EAS) after CV sweeping, the EAS degradation for the former is lower, further confirming the higher stability of Pt/SnO2/CNTs. CV and potentiostatic current–time curves were recorded for ethanol electro‐oxidation on both catalysts before and after CV sweeping and the results showed that the mass specific activity of Pt/CNTs increases more than that of Pt/SnO2/CNTs, indicating that Pt/CNTs experiences more severe evolution and is less stable. The calculated area specific activity of Pt/SnO2/CNTs is larger than that of Pt/CNTs, indicating SnO2 can co‐catalyze Pt due to plenty of interfaces between SnO2 and Pt.  相似文献   

13.
A novel composite electrode is fabricated through the electrodeposition of hydrous ruthenium oxide (RuO2·xH2O) and platinum (Pt) particles into the matrix of polyaniline (PANI). Scanning electron microscopy reveals that RuO2·xH2O and Pt particles are homogeneously distributed into the matrix of PANI. A comparison of the sizes of Pt and RuO2·xH2O particles incorporated into the PANI film reveals that Pt particles are smaller in sizes as compared with the sizes of RuO2·xH2O particles. The catalytic activity of composite electrodes was evaluated for the oxidation of methanol by using cyclic voltammetry and chronoamperometry. A relatively high catalytic current was noticed for the oxidation of methanol (2.37 mA/cm2) at PANI‐Pt‐RuO2·xH2O electrode (+0.6 V (V vs. Ag/AgCl) in comparison to oxidation current at PAN‐Pt (1.27 mA/cm2) electrode. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

14.
SnO2-coated multiwall carbon nanotube (MWCNT) nanocomposites were synthesized by a facile hydrothermal method. The as-prepared nanocomposites were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The SnO2/MWCNT composites, when combined with carboxymethyl cellulose (CMC) as a binder, show excellent cyclic retention, with the high specific capacity of 473 mAh g−1 beyond 100 cycles, much greater than that of the bare SnO2 which was also prepared by the hydrothermal method in the absence of MWCNTs. The enhanced capacity retention could be mainly attributed to good dispersion of the tin dioxide particles in the matrix of MWCNTs, which protected the particles from agglomeration during the cycling process. Furthermore, the usage of CMC as a binder is responsible for the low cost and environmental friendliness of the whole electrode fabrication process.  相似文献   

15.
Mesoporous TiO2 microspheres were successfully synthesized by a facile hydrothermal process and the obtained product was sintered at 450 °C. The sintered TiO2 powder was characterised by powder X-ray diffraction pattern and the result shows pure anatase phase with good crystalline nature. The morphological image of field emission scanning electron microscopy and high resolution transmission electron microscopy shows spherical shape and size of the particles is around 100 to 300 nm. The Brunauer–Emmett–Teller surface area of synthesized TiO2 material was 56.32 m2 g?1 and average pore width of synthesized materials was 7.1 and 9.3 nm. Bimodal pore structure of TiO2 microspheres has been very effective for electrolyte diffusion into photoanode in dye sensitized solar cells. The synthesized anatase TiO2 microsphere based dye sensitized solar cells have high surface area with light scattering effect to enhance the photocurrent and conversion efficiency than the commercial P25 photoanode material. The power conversion efficiency of synthesized mesoporous TiO2 microspheres and commercial P25 material is 4.2 and 2.7 % respectively. Therefore bimodal mesoporous anatase TiO2 microsphere appears to be a promising and potential candidate for dye sensitized solar cells (DSSC) application.  相似文献   

16.
We successfully fabricated uniform SnO2–SiO2–Pt composite nanofibres (NFs) by using a co-electrospinning technique, in which we set up two coaxial capillaries. Morphology control of NFs was investigated, along with their structural properties and chemical compositions. Furthermore, to systematically investigate the morphological changes in SnO2–SiO2–Pt composite NFs, the relative weight ratios of the Sn precursor to the Si precursor including the 4 wt% Pt precursor were controlled at 3:1, 1:1, and 1:3. To demonstrate the formation mechanism of the composite NFs, the precursor positions of the shell section and the core section in co-electrospinning were reversed. The resultant composite NFs were investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). These results showed that in the case of the optimum weight ratio (1:1) of the Sn precursor in the shell section to the Si precursor including the 4 wt% Pt precursor in the core section, SnO2 and Pt nanoparticles were uniformly grown on SiO2 NFs, implying the successful formation of uniform SnO2–SiO2–Pt composite NFs.  相似文献   

17.
Metal oxide semiconductors with branched structures, such as branched nanowires (b-NWs), have promising properties for being used in gas sensors. In this work, we synthesized Pt-decorated Bi2O3-branched SnO2 nanowires (NWs). NO2 sensing studies revealed the superior capacity of a Pt-decorated Bi2O3-branched SnO2 NWs gas sensor relative to pristine and branched SnO2 gas sensors, and it worked at near room temperature (50 °C). The increased sensing capacity was related to the synergistic effects of Pt decoration and Bi2O3 branching, particularly the morphology of the gas sensor with branched structures, the promising effects of Pt as a noble metal with good catalytic activity, and the generation of homo- and heterojunctions in the Pt-decorated Bi2O3-branched SnO2 NWs gas sensor. The results obtained in this work are useful for design and development of NO2 gas sensors using a simple strategy, which can be easily extended to various metal oxides.  相似文献   

18.
The electronic properties of Ni and Pt nanoparticles deposited on CeO2(111) have been examined using core and valence photoemission. The results of valence photoemission point to a new type of metal–support interaction which produces large electronic perturbations for small Ni and Pt particles in contact with ceria. The Ni/CeO2(111) and Pt/CeO2(111) systems exhibited a density of metal d states near the Fermi level that was much smaller than that expected for bulk metallic Ni or Pt. The electronic perturbations induced by ceria on Ni made this metal a very poor catalyst for CO methanation, but transformed Ni into an excellent catalyst for the production of hydrogen through the water-gas shift and the steam reforming of ethanol. Furthermore, the large electronic perturbations seen for small Pt particles in contact with ceria significantly enhanced the ability of the admetal to adsorb and dissociate water made it a highly active catalyst for the water-gas shift. The behaviour seen for the Ni/CeO2(111) and Pt/CeO2(111) systems illustrates the positive effects derived from electronic metal–support interactions and points to a promising approach for improving or optimizing the performance of metal/oxide catalysts.  相似文献   

19.
Hard carbon spherules (HCS) were used as support of Pt nanoparticles as electrocatalyst for direct methanol fuel cells (DMFCs). Scanning electron microscopy (SEM) images show that the size of the Pt particles on HCS by reduction of K2PtCl6 with ethylene glycol is 4-5 nm. High-resolution transmission electron microscopy (HRTEM) study reveals that the Pt particles on the HCS surface have faceted crystalline structures. The size and aggregation of the Pt particles depend on the surface properties of the carbon support and the medium of the reduction reaction. Cyclic voltammetry and galvanostatic polarization experiments show that the Pt/HCS catalyst exhibits a higher catalytic activity in the electrooxidation of methanol than either the Pt/MCMB or the commercial Pt/Vulcan XC-72 catalyst does.  相似文献   

20.
Novel submicrometer‐scale flat carbon fibers (SFCF) have been synthesized by catalytic chemical vapor deposition of acetylene over an Ni‐Al layered double hydroxide (NiAl‐LDH) compound, and the electrochemical activity of Pt supported on as‐synthesized SFCF for methanol oxidation has been investigated. The materials were characterized by power X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectra, and cyclic voltammetry tests. The results reveal that the active crystal facets of the NiAl2O4 spinel phase derived from NiAl‐LDH can deposit carbon atoms to grow SFCF, and that the co‐growing Ni nanoparticles are not catalytically active for the formation of SFCF. Furthermore, after support with Pt, the resultant Pt/SFCF electrocatalyst shows much higher activity for methanol oxidation than the Pt/C one in both acid and alkaline media, which is attributed to the combined beneficial effects of the microstructure of the SFCF support, improved electrical conductivity originating from the NiAl2O4 spinel catalyst embedded in SFCF, and improved dispersion of Pt particles through exposed Ni nanoparticles adhering intimately to the SFCF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号