首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A systematic investigation was conducted on the mechanism and electrocatalytic properties of O2 and Cl2 evolution on mixed oxide electrodes of nominal composition: Ti/[Ru(0.3)Ti(0.6)Ce(0.1−x)]O2[Nb2O5](x) (0 ≤ x ≤ 0.1). For the oxygen evolution, a 30 mV Tafel slope is obtained in the presence of CeO2, while in its absence a 40 mV coefficient is observed. The intrinsic electrocatalytic activity is mainly due to electronic factors, as result of the synergism between Ru and Ce oxides. For chlorine evolution, the Tafel slope (30 mV) is independent on oxide composition. The best global electrocatalytic activity for ClER was observed in the absence of Nb2O5 additive. Variation of the voltammetric charge throughout the experiments confirms high CeO2 content compositions are fragile, due mainly to the porosity caused by CeO2 presence. On the other hand, Nb2O5 addition decreases considerably this instability.  相似文献   

2.
Phase equilibria and glass formation studies of the (1 − x)TeO2-xCdO system (0.05 ≤ x ≤ 0.33 mol) were realized by using differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The samples were prepared by applying a conventional melt-quenching technique at 800 °C. The glass formation range of the system was determined as 0.05 ≤ x < 0.15 and the sample containing 10 mol% CdO showed the highest glass stability. Crystallization behavior of the TeO2-CdO glasses was investigated and formation and/or transformation of different phases were detected for each crystallization reaction. In order to obtain thermal stability of the system, as-cast samples were heat-treated above all crystallization reaction temperatures at 550 °C for 24 h. A binary eutectic: liquid → TeO2 + CdTe2O5 was detected at 638 ± 4 °C. Crystallization behavior of the TeO2-CdO glasses and microstructural characterization of the TeO2-CdTe2O5 system was realized.  相似文献   

3.
Several compositions of NdYb1−xGdxZr2O7 (0 ≤ x ≤ 1.0) ceramics were prepared by pressureless-sintering method at 1973 K for 10 h in air. The relative density, microstructure and electrical conductivity of NdYb1−xGdxZr2O7 ceramics were analyzed by the Archimedes method, X-ray diffraction, scanning electron microscopy and impedance plots measurements. NdYb1−xGdxZr2O7 (0 ≤ x ≤ 0.3) ceramics have a single phase of defect fluorite-type structure, and NdYb1−xGdxZr2O7 (0.7 ≤ x ≤ 1.0) ceramics exhibit a single phase of pyrochlore-type structure; however, the NdYb0.5Gd0.5Zr2O7 composition shows mixed phases of both defect fluorite-type and pyrochlore-type structures. The measured values of the grain conductivity obey the Arrhenius relation. The grain conductivity of each composition in NdYb1−xGdxZr2O7 ceramics gradually increases with increasing temperature from 673 to 1173 K. NdYb1−xGdxZr2O7 ceramics are oxide-ion conductor in the oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The highest grain conductivity value obtained in this work is 1.79 × 10−2 S cm−1 at 1173 K for NdYb0.3Gd0.7Zr2O7 composition.  相似文献   

4.
La(1−x)SrxFeO3 (x = 0.2,0.4) powders were prepared by a stearic acid combustion method, and their phase structure and electrochemical properties were investigated systematically. X-ray diffraction (XRD) analysis shows that La(1−x)SrxFeO3 perovskite-type oxides consist of single-phase orthorhombic structure (x = 0.2) and rhombohedral one (x = 0.4), respectively. The electrochemical test shows that the reaction at La(1−x)SrxFeO3 oxide electrodes are reversible. The discharge capacities of La(1−x)SrxFeO3 oxide electrodes increase as the temperature rises. With the increase of the temperature from 298 K to 333 K, their initial discharge capacity mounts up from 324.4 mA h g−1 to 543.0 mA h g−1 (when x = 0.2) and from 147.0 mA h g−1 to 501.5 mA h g−1 (when x = 0.4) at the current density of 31.25 mA g−1, respectively. After 20 charge-discharge cycles, they still remain perovskite-type structure. Being similar to the relationship between the discharge capacity and the temperature, the electrochemical kinetic analysis indicates that the exchange current density and proton diffusion coefficient of La(1−x)SrxFeO3 oxide electrodes increase with the increase of the temperature. Compared with La0.8Sr0.2FeO3, La0.6Sr0.4FeO3 electrode is a more promising candidate for electrochemical hydrogen storage because of its higher cycle capacity at various temperatures.  相似文献   

5.
Sintering behavior, microstructure and microwave dielectric properties of (1 − x)Li3NbO4-xLiF (0 ≤ x ≤ 0.9) ceramics have been studied in this paper. Continuous solid solution with rock salt structure formed across the entire compositional range. Phase transformed from ordered body-centered cubic phase to short range ordered face-centered cubic phase with the addition of LiF. The x > 0.4 compositions could be densified at 850 °C/2 h. The optimized Q × f value for each composition increased with the increase of LiF content and saturated at about 75,000 GHz when x ≥ 0.15, whereas the optimized dielectric permittivity decreased with the increase of LiF content. All specimens exhibited negative τf value. The chemical compatibilities with copper (Cu) in the case of x = 0.4 composition and silver (Ag) in the case of x = 0.5 composition were also investigated, respectively. No chemical reaction has taken place between the matrix phase and Ag or Cu after sintering at 850 °C/2 h or 950 °C/2 h, respectively.  相似文献   

6.
A series of Ni substituted spinel LiNixMn2−xO4 (0 ≤ x ≤ 0.5) have been synthesized to study the evolution of the local structure and their electrochemical properties. X-ray diffraction showed a few Ni cations moved to the 8a sites in heavily substituted LiNixMn2−xO4 (x ≥ 0.3). X-ray photoelectron spectroscopy confirmed Ni2+ cations were partially oxidized to Ni3+. The local structures of LiNixMn2−xO4 were studied by analyzing the and A1g Raman bands. The most compact [Mn(Ni)O6] octahedron with the highest bond energy of Mn(Ni)O was found for LiNi0.2Mn1.8O4, which showed a Mn(Ni)O average bond length of 1.790 Å, and a force constant of 2.966 N cm−1. Electrolyte decomposition during the electrochemical charging processes increased with Ni substitution. The discharge capacities at the 4.1 and 4.7 V plateaus obeyed the linear relationships with respect to the Ni substitution with the slopes of −1.9 and +1.9, which were smaller than the theoretical values of −2 and +2, respectively. The smaller slopes could be attributed to the electrochemical hysteresis and the presence of Ni3+ in the materials.  相似文献   

7.
In this study, MgxM2 − xP2O7 (M = Cu, Ni; 0 ≤ x ≤ 2) and Mg3 − yNiy(PO4)2 (0 ≤ y ≤ 3) compositions were synthesized by the chemical coprecipitation method and characterized by X-ray diffraction, UV-vis-NIR spectroscopy and CIE L* a* b* (Commission Internationale de l’Eclairage L* a* b*) parameters measurements.Solid solutions with α-Cu2P2O7 and α-Ni2P2O7 structures and solid solutions with Ni3(PO4)2 structure were obtained from diphosphate and orthophosphate compositions respectively. Isostructurality of α-Ni2P2O7 and α-Mg2P2O7 structures enlarges the compositional range of solid solution formation respect to the MgxCu2 − xP2O7 solid solutions one.The CIE L* a* b* parameters in MgxNi2 − xP2O7 samples were obtained comparable with these parameters in others yellow materials suitable for ceramic pigments. Mg0.5Ni1.5P2O7 composition fired at 800 °C or 1000 °C is the optimal composition to obtain yellow materials with α-diphosphate structure in conditions of this study.  相似文献   

8.
Electrodeposition of Ni1−xFex (x = 0.1-0.9) films was carried out from a chloride plating solution containing saccharin as an organic additive at a constant current density (5 mA/cm2) and a controlled pH of 2.5. X-ray diffraction studies revealed the existence of an fcc, or γ phase, in the range of 10-58 wt.% Fe, a mixed fcc/bcc phase in the range of 59-60 wt.% Fe, and a bcc, or α phase in the range of 64-90 wt.% Fe. The saturation magnetization, Bs, of electrodeposited Ni1−xFex alloys at the room temperature was found to increase with the increase of Fe-content and follows the Slater-Pauling curve, but deviates from as-cast bulk NiFe alloys. The coefficient of thermal expansion, CTE, of electrodeposited alloys at room temperature also deviates from as-cast bulk NiFe alloys. Annealing of α-Ni36Fe64 alloy results in a martensitic α → γ phase transformation, which takes place between 300 and 400 °C. It was demonstrated that thermal treatment above 400 °C was necessary to obtain magnetic and mechanical properties similar to those to conventional Invar alloy. Annealing of α-Ni36Fe64 alloy at 700 °C brings about a decrease of Bs from 1.75 to 0.45 T. By controlling the annealing conditions of α → γ martensitic transformation, it is possible to adjust the CTE of Ni36Fe64 alloy over the broad limits from 2.7 to 8.7 × 10−6/°C.  相似文献   

9.
Perovskite-type ternary oxides with molecular formulae, La2−xSrxNiO4 (0 ≤ x ≤ 1), were prepared by a modified citric acid sol-gel route at 600 °C for their possible use in a direct methanol fuel cell (DMFC). The study was conducted by cyclic voltammetry, chronoamperometry, impedance and anodic Tafel polarization techniques. The results showed that the electrocatalytic activity of the base oxide (x = 0) in 1 M KOH plus 1 M CH3OH at 25 °C increases with x, the observed current densities being 23.6, 47.3, 43.2 and 50.9 mA cm−2 at a scan rate of 10 mV s−1 and E = 0.6 V versus Hg/HgO for oxides with x = 0, 0.25, 0.5 and 1.0, respectively. All the four perovskite anodes used in this study did not indicate any poisoning by the methanol oxidation intermediates/products. The methanol electro-oxidation reaction followed a Tafel slope of ∼2 × 2.303RT/3F (=40 mV decade−1) on each oxide catalyst, regardless of Sr content.  相似文献   

10.
A series of ZnxMg1 − xGa2O4:Co2+ spinels (x = 0, 0.25, 0.5, 0.75, and 1.0) was successfully produced through low-temperature burning method by using Mg(NO3)2·4H2O, Zn(NO3)2·6H2O, Ga(NO3)3·6H2O, CO(NH2)2, NH4NO3, and Co(NO3)2·6H2O as raw materials. The product was characterized by X-ray diffraction, transmission electron microscopy, and photoluminescence spectroscopy. The product was not merely a simple mixture of MgGa2O4 and ZnGa2O4; rather, it formed a solid solution. The lattice constant of ZnxMg1 − xGa2O4:Co2+ (0 ≤ x ≤ 1.0) crystals has a good linear relationship with the doping density, x. The synthesized products have high crystallinities with neat arrays. Based on an analysis of the form and position of the emission spectrum, the strong emission peak around the visible region (670 nm) can be attributed to the energy level transition [4T1(4P) → 4A2(4F)] of Co2+ in the tetrahedron. The weak emission peak in the near-infrared region can be attributed to the energy level transition [4T1(4P) → 4T2(4F)] of Co2+ in the tetrahedron.  相似文献   

11.
Cation substituted bismuth vanadate possesses high oxygen ion conductivity at lower temperatures. The ionic conductivity of this material at 300 °C is 50–100 times more than any other solid electrolyte. Three phases (α, β, γ) are observed in the substituted compound; α and γ are low and high conducting phase, respectively. Samples of Bi4V2−xCuxO11−δ (x = 0–0.4) were prepared by solid-state reaction technique. Impedance spectroscopy measurements were carried out in the frequency range of 100 Hz to 100 kHz using gold sputtered cylindrical shaped pellets to obtain bulk ionic conductivities as a function of the substitution and temperature. The change of slopes observed in the Arrhenius plots is in agreement with the phase transitions for all the compositions. The highest ionic conductivity of the Cu-substituted compound was observed in Bi4V1.8Cu0.2O11−δ which is attributed to its lower activation energy. Microstructural studies indicated the stabilization of high temperature γ-phase at low temperature in those samples whose ionic conductivity observed was higher.  相似文献   

12.
A new ferroelectric solid solution of (1 − x)Ba(Lu1/2Nb1/2)O3-xPbTiO3 (BLN-PT) (0 ≤ x ≤ 1) has been synthesized by solid state reactions. Its structure and electric properties have been studied by X-ray diffraction and di-/ferro-electric measurements. Based on the investigation, a partial solid state phase diagram of the binary BLN-PT ceramics system has been established, which exhibits a morphotropic phase boundary (MPB) region in the composition range of 0.64 ≤ x ≤ 0.68. The Curie temperature is measured to be around 250 °C in the vicinity of the MPB region, which is much higher than that of PMNT or PZNT system. The dielectric behavior has been discussed based on Curie-Weiss Law and Lorentz-type quadratic relationship. With increasing PT content, a transformation from relaxor to ferroelectric phase has been demonstrated in the solid solution system.  相似文献   

13.
Composite G/PPy/PPy(La1−xSrxMnO3)/PPy electrodes made of the perovskite La1−xSrxMnO3 embedded into a polypyrrole (PPy) layer, sandwiched between two pure PPy films, electrodeposited on a graphite support were investigated for electrocatalysis of the oxygen reduction reaction (ORR). PPy and PPy(La1−xSrxMnO3) (0≤ x ≤0.4) successive layers have been obtained on polished and pretreated graphite electrodes following sequential electrodeposition technique. The electrolytes used in the electrodeposition process were Ar saturated 0.1 mol dm−3 pyrrole (Py) plus 0.05 mol dm−3 K2SO4 with and without containing a suspension of 8.33 g L−1 oxide powder. Films were characterized by XRD, SEM, linear sweep voltammetry, cyclic voltammetry (CV) and electrochemical impedance (EI) spectroscopy. Electrochemical investigations were carried out at pH 12 in a 0.5 mol dm−3 K2SO4 plus 5 mmol dm−3 KOH, under both oxygenated and deoxygenated conditions. Results indicate that the porosity of the PPy matrix is considerably enhanced in presence of oxide particles. Sr substitution is found to have little influence on the electrocatalytic activity of the composite electrode towards the ORR. However, the rate of oxygen reduction decreases with decreasing pH of the electrolyte from pH 12 to pH 6. It is noteworthy that in contrast to a non-composite electrode of the same oxide in film form, the composite electrode exhibits much better electrocatalytic activity for the ORR.  相似文献   

14.
The outcomes of dilatometric, rentgenographic (XRD), microscopic (SEM) as well as dielectric measurements of polycrystalline Ba(Ti1 − xSnx)O3 (BTSx) are described. These measurements were carried out within the range of para-ferroelectric phase transition and also for the high temperature paraelectric phase (from 300 K to 723 K). Within the range, where glass-like anomalies were noticed, the occurrences of electric properties peaks were recorded as well. Their occurrences are interpreted under the assumption of polar regions presence within the paraelectric phase. The size and dynamics of these polar regions influence the dielectric response at given temperatures and frequency of external electric field. Anomalies of dielectric losses and phase angle are pointing out on non-homogeneity and thermal evolution of polar regions.  相似文献   

15.
The Pechinni method (A) as well as hydrothermal treatment (B) of co-precipitated CeO2-based gels with NaOH solution were used to synthesise pure CeO2, and CeO2-based solid solutions with formula Ce1−xMxO2, Ce1−x(M0.5Ca0.5)xO2 M = Gd, Sm for 0.15 < x < 0.3 nanopowders. The thermal evolution of CeO2-based precursors during heating them up to 1000 °C was monitored by thermal (TG, DTA) analysis and X-ray diffraction method. All nanopowders and samples sintered were found to be pure CeO2 or ceria-based solutions with fluorite-type structure. The microstructure of CeO2-based sintered samples at 1500 °C (A) or 1250 °C (B) was observed for 2 h under the scanning electron microscope. The electrical properties of singly Ce1−xMxO2 or doubly doped CeO2-based samples with formula Ce1−x(M0.5Ca0.5)xO2, M = Gd, Sm, 0.15 < x < 0.30 were investigated by means of the ac impedance spectroscopy method throughout the temperature range of 600-800 °C. It has been stated that partial substitution of calcium by samarium or calcium by gadolinium in the Ce1−x(M0.5Ca0.5)xO2, M = Gd, Sm solid solutions leads to ionic conductivity enhancement comparable with only samaria- or gadolina-doped ceria. The CeO2-based samples with small-grained microstructures obtained from powders synthesised by hydrothermal method exhibited better ionic conductivity than samples with the same composition obtained from powders synthesised by the Pechinii method. The stability of the electrolytic properties of selected co-doped ceria sinters in fuel gases (H2, CH4) as well as exhaust gases from diesel engine was also investigated. The co-doped Ce0.8(Sm0.5Ca0.5)0.2O2 or Ce0.85(Gd0.5Ca0.5)0.15O2 dense samples would appear be to more adequate oxide electrolytes than Ce1−xMxO2, M = Sm, Gd and x = 0.15 or 0.2 for electrochemical devices operating at temperatures ranging from 600 to 700 °C.  相似文献   

16.
Negative thermal expansion materials ZrW2−xMoxO8 (0 ≤ x ≤ 2) have been successfully synthesized by the reaction of a mixture of ammonium tungstate and ammonium molybdate with zirconium oxynitrate using a hydrothermal method. Effect of substituted ion Mo on the microstructure, α-to-β and cubic to trigonal phase transition in resulting ZrW2−xMoxO8 powders was examined by the XRD experiments. It was found that the structural phase transition temperature decreased slightly with increasing substituted content. The cubic to trigonal phase transition was also influenced by substituted content. The resulting products decomposed to WO3/MoO3 and ZrO2 as temperature increasing when x ≤ 0.5 and while x > 0.5, the cubic phase transited to trigonal phase. The effect of substituted Mo on the morphology of resulting products was also investigated by SEM experiments.  相似文献   

17.
Electroless ZnO deposition on a glass substrate from dissolved oxygen-free aqueous solutions containing Zn(NO3)2 and dimethylamineborane (DMAB) was examined to yield ZnO films applicable to a transparent conducting oxide (TCO). Concentration of Zn(NO3)2 was optimized in terms of crystal growth orientation and surface morphology using XRD and AFM, and that ranging from 0.065 to 0.075 M was found to provide well 〈0 0 0 1〉-oriented dense ZnO films. The polycrystalline ZnO films deposited with Zn(NO3)2 concentration of 0.07 M had a preferred 〈0 0 0 1〉 growth orientation and exhibited high visible transparency. Top-view and cross-sectional FE-SEM images revealed that hexagonal columnar ZnO grains with 200 nm in diameter and 290 nm in length grew almost vertically from a glass substrate. Heat treatment at 723 K under a reductive atmosphere was performed to increase the intrinsic carrier concentration in the ZnO film, and Hall effect measurements revealed low electrical resistivity of 4.7 × 10−3 Ω cm.  相似文献   

18.
This study reports on the synthesis of ternary semiconductor (BixSb1−x)2Te3 thin films on Au(1 1 1) using a practical electrochemical method, based on the simultaneous underpotential deposition (UPD) of Bi, Sb and Te from the same solution containing Bi3+, SbO+, and HTeO2+ at a constant potential. The thin films are characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and reflection absorption-FTIR (RA-FTIR) to determine structural, morphological, compositional and optic properties. The ternary thin films of (BixSb1−x)2Te3 with various compositions (0.0 ≤ x ≤ 1.0) are highly crystalline and have a kinetically preferred orientation at (0 1 5) for hexagonal crystal structure. AFM images show uniform morphology with hexagonal-shaped crystals deposited over the entire gold substrate. The structure and composition analyses reveal that the thin films are pure phase with corresponding atomic ratios. The optical studies show that the band gap of (BixSb1−x)2Te3 thin films could be tuned from 0.17 eV to 0.29 eV as a function of composition.  相似文献   

19.
Physical and electrochemical investigations of vanadium phosphates, Li2xVO(H2−xPO4)2 (0 < x < 2), have been undertaken. H+/Li+ ionic exchange from VO(H2PO4)2 to Li2VO(HPO4)2 leads to grain decrepitation. Further ionic exchange toward formation of Li4VO(PO4)2 lowers the symmetry. As inferred from potentiodynamic cycling correlated to ex situ and in situ X-ray diffraction (XRD), the system Li/Li4VO(PO4)2 shows several phase transformations that are associated with thermodynamical potential hysteresis that span from roughly 15 mV to more than 1.8 V. Small hysteresis are associated with topotactic reactions and with VV/VIV and VIII/VII redox couples. Large potential hysteresis values (>1 V) were observed when oxidation of VIII to VIV is involved.  相似文献   

20.
Microwave dielectric properties of (1 − x)BaZn2Ti4O11-xBaNd2Ti4O12 (x = 0-1.0) ceramics were investigated by the solid-state reaction with the purpose of finding a microwave ceramics with high dielectric constant (?r), high quality factor (Q × f) and low temperature coefficient of resonant frequency (τf). A two phase system BaZn2Ti4O11-BaNd2Ti4O12 was formed and SEM photographs show equiaxed BaZn2Ti4O11 grains and columnar BaNd2Ti4O12 grains. The microwave dielectric properties were strongly determined by the chemical composition. As increasing x from 0 to 1.0, the phase composition varied from pure BaZn2Ti4O11, to the two phase system BaZn2Ti4O11-BaNd2Ti4O12 and then to pure BaNd2Ti4O12. Therefore, the ?r raised from 29.1 to 82.0 and the Q × f values decreased from 54,630 GHz to 8110 GHz, and the τf values increased from −29 ppm/°C to 94 ppm/°C. 0.8BaZn2Ti4O11-0.2BaNd2Ti4O12 ceramics sintered at 1250 °C for 2.5 h had ?r = 39.1, Q × f = 37,850 GHz and τf = −9 ppm/ °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号