首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conformity and phase structure of atomic layer deposited TiO2 thin films grown on silicon substrates were studied. The films were grown using TiCl4 and Ti(OC2H5)4 as titanium precursors in the temperature range from 125 to 500 °C. In all cases perfect conformal growth was achieved on patterned substrates with elliptical holes of 7.5 μm depth and aspect ratio of about 1:40. Conformal growth was achieved with process parameters similar to those optimized for the growth on planar wafers. The dominant crystalline phase in the as-grown films was anatase, with some contribution from rutile at relatively higher temperatures. Annealing in the oxygen ambient resulted in (re)crystallization whereas the effect of annealing depended markedly on the precursors used in the deposition process. Compared to films grown from TiCl4, the films grown from Ti(OC2H5)4 were transformed into rutile in somewhat greater extent, whereas in terms of step coverage the films grown from Ti(OC2H5)4 remained somewhat inferior compared to the films grown from TiCl4.  相似文献   

2.
Titanium diboride (TiB2) ceramic particulates are dispersed in molten aluminium and its alloys for grain refining and for making cast metal–matrix composites. For producing cast MMC, the dispersion of the ceramic phase via in-situ aluminothermic reduction of K2TiF6 and KBF4 flux mixture with molten aluminium and, via the addition of exogenously formed TiB2 with the fluoride flux has been studied at 900°C. In this article, the aspects of interfacial energy that govern the dispersion and agglomeration of TiB2 particulates are examined. The Gibbs-adsorption interface equation is particularly employed to define and to quantify the change in the surface energy as a function of the alloying element concentration and, consequently the effect of interfacial energy on the nucleation rate of TiB2 formed via metallothermic reduction reaction and the size of the ceramic phase is also explained.  相似文献   

3.
Sodium chloride aerosols were generated from a 1.0 percent solution and passed through a tubular furnace, then recondensed at 29°C in a cooling section in the presence of SO2. The dry particles ranged from 0.711 to 0.843 µm and the condensed droplets were in the 1.66 to 2.88 µm range. Final droplet size was varied by controlling the temperature of the nebulizer solution between 17 and 50°C. The SO2 concentration in the gas phase of the condensing cloud was varied between 0.5x10 - 3 and 2.5 xl0 - 3 atm.

Cloud droplets were separated from the gas stream in a point-to-plane electrostatic precipitator and the droplets analyzed colorimetrically for total sulfur content.

Concentrations of SO2 in the aqueous phase were about one order of magnitude greater than values obtained from equilibrium constants. The collection rate of SO2 at 29°C appeared to be first order in SO2 gas phase concentrations.

A model for this process was constructed, based on the hydrate formation in the gas-water interface[SO2]g + n[H2O]ℓ ⇋ [SO2 · n(H2O)]ℓ

The order of the hydrate n was estimated to be 4.0.  相似文献   

4.
A new type of abrasion-resistant cast boron steel was developed based on the service conditions of the guide roller in the high-speed steel wire-rod mill. The lath martensite was its matrix and the broken Fe2B and dispersive distributed TiB2 were its wear resistant skeleton. The tensile strength, hardness, and impact toughness of cast boron steel quenched at 1000°C excel 750 MPa, 54 HRC, 14 J/cm2, respectively. The guide roller made of this steel has high strength and wear resistance and excellent thermal fatigue resistance and it is reliable to use in the high-speed steel wire-rod mill. Its service life is 1.133 times longer than that of cast high chromium nickel alloy steel and corresponding to that of the sintered-carbide.  相似文献   

5.
By method of isothermal gravimetry at 600-700°C, CH4 concentration 32-100% in Ar and 91-100% in H2 under atmospheric pressure the kinetics of CH4 pyrolysis under Ni/La2O3 catalysts is studied. Estimated apparent activation energy of reaction is 73 kJ/mol for fresh catalyst and 71 kJ/mol for aged one. The reaction order on CH4 changes from 1.05 at 600°C to 1.3 at 700°C. The influence of H2 concentration on the reaction rate is more complicated. On the basis of kinetics measurements continuously working laboratory-scale reactor with gas and catalyst counter-flow is constructed and tested.  相似文献   

6.
以Ti、B_4C和SiC晶须(SiC_w)为原料,采用自蔓延高温合成法制备了多孔TiB__2-TiC复合材料。讨论了SiC_w含量对TiB__2-TiC复合材料物相、组织形貌、孔隙率和抗压强度的影响。结果表明:不添加SiC_w时,复合材料中主要物相为贫硼相TiB和Ti_3B_4以及TiC和少量TiB__2;在5Ti+B_4C体系中加入SiC_w后,贫硼相TiB和Ti_3B_4逐渐减少直至消失,而出现富硼相TiB__2和TiC的含量增加。随着SiC_w含量的增加,复合材料的孔隙率逐渐增加,由38.46%增加至5_2.78%。当SiC_w含量小于1.0时,随着SiC_w含量的增加,多孔TiB_2-TiC复合材料的抗压强度明显增加,当SiC_w含量为1.0时,复合材料的抗压强度达到最大值56.04MPa。Ti与SiC_w反应会生成TiC、Ti_3SiC_2和TiSi_2等物相,消耗一定量的Ti,使得与B4C反应的Ti量减少,从而促进富硼相TiB_2形成和TiC的增多。并且在SiC_w表面形成颗粒状TiC或者层片状Ti_3SiC_2,增加SiC_w与TiB_2-TiC基体之间的结合,更有利于发挥SiC_w的强化作用。  相似文献   

7.
Highly sinterable submicron Pb0.l Ca0.9La2S4(PCLS) powders were prepared by sulfidizing calcium and lanthanum alkoxides al 500°C under CS, atmosphere for 8 hours and then in pure H2S atmosphere at 600-800°C for 8 hours. After sintering the pellets were used as infrared transmitting window material of 8-14 μm wavelength. The CdS was added from 3 to 7 wt.% lo improve the sinterability by forming liquid phase during sintering. For sulfidization of lanthanum alkoxide, sulfide powder with LaS2 phase was formed at 500°C, and a pure Th3P4 phase formed follow by 700°C heat treatment. A powder with β-La2S3phase formed at 800°C, and a pure Th3 P4phase formed follow by 900°C heat treatment. The powder with β-La2S3 phase was sintered to full density at 1350°C by adding 3 wt.% CdS. The PCLS powder with Th3P4 phase sintered to full density at 1400°C by also adding 3 wt.% CdS. The pellet exhibited 45% transmittanceat 13 μm when sintered from the powder with p-La2S3phase. The transmittance at 2.5 μm for the pellet sintered from the PCLS powder with Th3P4 type structure was 3 times higher than that from the p-La2S3 powder.  相似文献   

8.
HfO2 thin films with columnar microstructure were deposited directly on ZnS substrates by electron beam evaporation process. SiO2 thin films, deposited by reactive magnetron sputtering, were used as buffer layers, HfO2 thin films of granular microstructure were obtained on SiO2 interlayer by this process. X-ray diffraction patterns demonstrate that the as-deposited HfO2 films are in an amorphous-like state with small amount of crystalline phase while the HfO2 films annealed at 450 °C in O2 for 30 min and in Ar for 150 min underwent a phase transformation from amorphous-like to monoclinic phase. Antireflection effect in certain infrared wave band, such as 3–6 μm, 4–12 μm, 4–8 μm and 3–10 μm, can be observed, which was dependent on the thickness of thin films. The cross-sectional images of HfO2 films, obtained by field emission scanning electron microscopy, revealed that there was no distinct morphological change upon annealing.  相似文献   

9.
The deposition behavior of silicon in hot wire chemical vapor deposition was investigated, focusing on the generation of negatively charged species in the gas phase using a gas mixture of 20% SiH4 and 80% H2 at a 450 °C substrate temperature under a working pressure of 66.7 Pa. A negative current of 6–21 µA/cm2 was measured on the substrate at all processing conditions, and its absolute value increased with increasing wire temperature in the range of 1400 °C–1900 °C. The surface roughness of the films deposited on the silicon wafers increased with increasing wire temperature in the range of 1510 °C–1800 °C. The film growth rate on the positively biased substrates (+ 100 V, + 200 V) was higher than that on the neutral (0 V) and negatively biased substrates (− 100 V, − 200 V, − 300 V). These results indicate that the negatively charged species are generated in the gas phase and contribute to deposition. The surface roughness evolved during deposition was attributed to the electrostatic interaction between these negatively charged species and the negatively charged growing surface.  相似文献   

10.
Nanocomposite Ti–B–N coatings with different chemical composition were prepared by non-reactive co-sputtering of a segmented TiN–TiB2 target. The coatings investigated are primarily composed of nanocrystalline TiN and TiB2 phases. Increasing boron content results in a decreasing grain size from approximately 6 to 2 nm. During a thermal treatment of such coatings solely recovery and recrystallization with subsequent grain growth would appear, since the two phases are in thermodynamic equilibrium. Differential scanning calorimetry (DSC) and X-ray diffraction analysis were used to investigate the recrystallization behavior and subsequent grain growth of the nanocomposite Ti–B–N coatings. On heating the coating samples, which were removed chemically from their low alloyed steel substrates, an exothermal peak appeared during the DSC measurements indicating grain growth. From the onset temperature of this peak the recrystallization temperature was found which increases with increasing boron content from 1032 to 1070 °C. Activation energies for grain growth are obtained from Kissinger plots and yield values decreasing from 7.9 to 4.4 eV with increasing boron content. After heat treatment up to 1400 °C during the DSC measurements the coatings showed grain sizes within the range of 15–30 nm. It was found that the highest recrystallization temperature does not imply the highest activation energy for grain growth.  相似文献   

11.
A new method is proposed for making titanium nitride (TiN) films at substrate temperatures between about 400 and 700°C. The films are formed from TiCl4 and NH3 by chemical vapor deposition. The method is versatile with growth rates of up to 0.1 μm s−1 possible. The optical properties of the films are measured and fitted theoretically using the Drude theory to obtain the plasma frequency of the films. A modification of the Drude theory according to Maxwell Garnett explains a decreased reflectance in the IR region for the thinner films. Use of the films as heat mirrors and other applications are discussed.  相似文献   

12.
ZnS-SiO2 targets have been directly soldered to copper backing plates at 180°C in air using an Sn56Bi4Ti(Ce, Ga) filler. The affinity of cerium to oxygen protects titanium from oxidation, allowing titanium to react with ZnS-SiO2 sputtering target. The shear strengths are 1.7, 8.7, and 1.3 MPa for ZnS-SiO2/ZnS-SiO2, copper/copper and ZnS-SiO2/copper joints, respectively. EPMA elemental mapping shows that aging test at 120° for 100 hours enhanced the segregation of titanium at the ZnS-SiO2/solder interfaces. The shear strength of ZnS-SiO2/copper joint after aging test is 1.3 MPa that shows no trace of degradation compared to the initial quality of the samples.  相似文献   

13.
The effect of SiO2 addition on densification and grain-growth behavior of 8YSCZ/SiO2 composites was investigated using high purity 8 mol% yttria-stabilized cubic zirconia powders (8YSCZ) doped with 0, 1, 5, 10 wt% SiO2. The specimens were sintered at 1400°C for 1 hour. It was seen that the sintered density increased with SiO2 content up to 1 wt% and further increase in SiO2 content led to a decrease in density. The enhanced density with increasing SiO2 content up to 1 wt% could be mainly attributable to liquid phase sintering. For grain growth measurements, the specimens sintered at 1400°C were annealed at 1400, 1500, and 1600°C for 10, 50, and 100 hours. The experimental results showed that the grain growth in 8YSCZ/SiO2 composites occurred more slowly than that in undoped 8YSCZ. Also, the grain growth rate decreased with increasing SiO2 content. The grain growth exponent value and the activation energy for undoped 8YSCZ were found to be 2 and 289 kJ/mol, respectively. The addition of SiO2 raised the grain growth exponent value to 3, and activation energy for the grain growth process was increased from 289 to 420 kJ/mol for the addition of SiO2 from 0 to 10 wt%.  相似文献   

14.
Ozonation of C60 in o-xylene produced three C60(O3)2 diozonides that were separated from one another and from two C60(O3)3 triozonides by High Performance Liquid Chromatography (HPLC). Upon thermolysis at 10, 15, and 16.6°C, each of the diozonides dissociated sequentially, first to a C60O(O3) oxyozonide, then to a C60O2 diepoxide. The three diepoxides were stable in solution for at least 3 weeks. The mean lifetimes of the three diozonides were 52 ± 5, 62 ± 6, and 17.3 ± 1.8 min, respectively (all at 15°C). The mean lifetimes of the three oxyozonides were 69.7 ± 0.7 and 58 ± 6 min at 16.6°C, respectively and about 240 min at 10°C. Photolysis of the diozonides yielded two dioxidoannulenes with UV-Vis adsorption maxima at 333 and 332 nm, and what appeared to be an epoxide-oxidoannulene with UV-Vis adsorption maximum at 327 nm. These annulenes were observed to form dimers. We have synthesized and characterized six C60O2 dioxides, at least three and possibly four of which were hitherto unknown. We report the discovery of oxyozonides that form during the dissociation of diozonides.  相似文献   

15.
Metal-organic chemical vapour deposition (MOCVD) of various phases in PrOx system has been studied in relation with deposition temperature (450–750 °C) and oxygen partial pressure (0.027–100 Pa or 0.2–750 mTorr). Depositions were carried out by pulsed liquid injection MOCVD using Pr(thd)3 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) precursor dissolved in toluene or monoglyme. By varying deposition temperature and oxygen partial pressure amorphous films or various crystalline PrOx phases (Pr2O3, Pr7O12, Pr6O11) and their mixtures can be grown. The pure crystalline Pr2O3 phase grows only in a narrow range of partial oxygen pressure and temperature, while high oxygen pressure (40–100 Pa) always leads to the most stable Pr6O11 phase. The influence of annealing under vacuum at 750 °C on film phase composition was also studied. Near 90% step coverage conformity was achieved for PrOx films on structured silicon substrates with aspect ratio 1:10. In air degradation of Pr2O3 films with transformation to Pr(OH)3 was observed in contrast to Pr6O11 films.  相似文献   

16.
(100)-oriented 0.462Pb(Zn1/3Nb2/3)O3–0.308Pb(Mg1/3Nb2/3)O3–0.23PbTiO3 (PZN-PMN-PT) perovskite ferroelectric thin films were prepared on La0.7Sr0.3MnO3/LaAlO3 (LSMO/LAO) substrate via a chemical solution deposition route. The perovskite LSMO electrode was found to effectively suppress the pyrochlore phase while promote the growth of the perovskite phase in the PZN-PMN-PT film. The film annealed at 700 °C exhibited a high dielectric constant of 2130 at 1 kHz, a remnant polarization, 2Pr, of 29.8 μC/cm2, and a low leakage current density of 7.2 × 10− 7 A/cm2 at an applied field of 200 kV/cm. The ferroelectric polarization was fatigue-free at least up to 1010 cycles. Piezoelectric coefficient, d33, of 48 pm/V was also demonstrated. The results showed that much superior properties could be achieved with the PZN-PMN-PT thin films on the solution derived LSMO electrode than on Pt electrode by sputtering.  相似文献   

17.
BaTiO3 thin films were prepared by using metal organic acid salts on MgO(100) substrates, which have large lattice-misfit with BaTiO3. Amorphous films prefired at 470°C were crystallized to BaTiO3 phase by heat treatment at higher temperature. Crystallinity and in-plane alignment of the prepared films were found to depend on the heat-treatment conditions. BaTiO3 films with high crystallinity but poor (100)-orientation were obtained in air at higher than 1200°C. Whereas, (100)-oriented epitaxial BaTiO3 film was fabricated by annealing at 900°C under low oxygen partial pressure (p(O2)). Low carbon dioxide partial pressure (p(CO2)) is also found to be essential for preparation of epitaxial BaTiO3 films on MgO substrates by using metal organic acid salts.  相似文献   

18.
A hot-pressing aided exothermic synthesis (HPES) technique was developed to fabricate NiAl matrix composites reinforced with TiB2 and TiC particles which were in situ reaction synthesized from elemental powders. These particles were uniformly dispersed in the matrix. The resulting products were hot isostatically pressed to nearly complete densification. It was found that the tensile yield strengths of the composites at 900°C were about two times stronger than that of unreinforced NiAl and were approximately three times stronger at 980°C. The interfaces between NiAl and TiC or TiB2 were atomically flat, sharp and free from any interfacial phases in most cases, however, a thin interfacial amorphous layer or overlapped interfacial layer was observed at the interfaces in some cases. This type of interfacial structure may be beneficial to the strength of the composites.  相似文献   

19.
Amita Verma  Anshu Goyal  R.K. Sharma   《Thin solid films》2008,516(15):4925-4933
The properties of sol–gel derived CeTi2O6 thin films deposited using a solution of cerium chloride heptahydrate and titanium propoxide in ethanol are discussed. The effect of annealing temperature on structural, optical, photoluminescence, photocatalysis and electrochemical characteristics has been examined. Lowest annealing temperature for the formation of crystalline CeTi2O6 phase in these samples is identified as 580 °C. The optical transmittance of the films is observed to be independent of the annealing temperature. The optical energy bandgap of the 600 °C annealed film for indirect transition is influenced by the presence of anatase phase of TiO2 in its structure. Fourier transform infrared spectroscopy investigations have evidenced increased bond strength of the Ti–O–Ti network in the films as a function of annealing temperature. The photoluminescence intensity of the films has shown dependence on the annealing temperature with the films fired at 450 °C exhibiting the maximum photoluminescence activity. The decomposition of methyl orange and eosin (yellow) under UV–visible light irradiation in the presence of crystalline CeTi2O6 films shows the presence of photoactivity in these films. The photocatalytic response of CeTi2O6 films is found to be superior to the TiO2 films. In comparison to crystalline films, the amorphous films have shown superior electrochemical characteristics. The 500 °C annealed amorphous films have exhibited the most appropriate properties for incorporation in electrochromic devices comprising tungsten oxide as the primary electrochromic electrode.  相似文献   

20.
The current aqueous cleaning step in the surface preparation of aluminum nitride (AlN) prior to metallization causes performance and reliability issues for the substrates used for microelectronic packaging due to surface reactions. These issues limit the use of AlN and its replacing of BeO, an environmentally hazardous material currently used. The aim of this investigation was to determine the effects of different solutions on the surface of AlN substrates under varying conditions at times up to 2419.2 ks (28 days). Concentration of the solutions, temperature, and immersion time were varied for the AlN samples in the solutions. Both elevated temperatures (50°C and 90°C) and low temperatures (5°C) were investigated.

Four general types of behavior were observed: minor changes in average surface roughness and microstructure, linear change in average surface roughness and pitted grains, nonlinear change in average surface roughness and product formation on AlN surface, and miscellaneous change in average surface roughness with surface product formation.

The surface roughening kinetics were very complex due to changes in both the reaction product morphology and reaction mechanism with temperature, solvent, and pH for a specific solvent. Minor changes in average surface roughness and microstructure were observed for HCl pH = 5, H2 SO4 pH = 5, NaOH pH = 8, NaOH pH = 10, NaOH pH = 12, deionized water and Alfred tap water at 5°C, HCl pH = 3 and oleic acid at 50°C and citric acid and oleic acid at 90°C. Linear changes in average surface roughness and pitted grains were observed for HCl pH = 2 and H2SO4 pH = 3 at 50°C and HCl pH = 2, H2SO4 pH = 3, and deionized water at 90°C. Non-linear change in average surface roughness and product formation on AlN surface was observed for HCl pH = 5, NaOH pH = 8 and Alfred tap water at 50°C and HCl pH = 5 and H2SO4 pH = 2 at 90°C. Miscellaneous changes in average surface roughness with surface product formation were observed for H2SO4 pH = 2, H2SO4 pH = 5, NaOH pH = 10, NaOH pH = 12, citric acid, Micro-90 and deionized water at 50°C and HCl pH = 3, H2SO4 pH = 5, NaOH pH = 8, NaOH pH = 10, NaOH pH = 12, Micro-90 and Alfred tap water at 90°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号