首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A posteriori error estimation and adaptive refinement technique for fracture analysis of 2-D/3-D crack problems is the state-of-the-art. The objective of the present paper is to propose a new a posteriori error estimator based on strain energy release rate (SERR) or stress intensity factor (SIF) at the crack tip region and to use this along with the stress based error estimator available in the literature for the region away from the crack tip. The proposed a posteriori error estimator is called the K-S error estimator. Further, an adaptive mesh refinement (h-) strategy which can be used with K-S error estimator has been proposed for fracture analysis of 2-D crack problems. The performance of the proposed a posteriori error estimator and the h-adaptive refinement strategy have been demonstrated by employing the 4-noded, 8-noded and 9-noded plane stress finite elements. The proposed error estimator together with the h-adaptive refinement strategy will facilitate automation of fracture analysis process to provide reliable solutions.  相似文献   

2.
The Galerkin boundary node method (GBNM) is a boundary only meshless method that combines variational formulations of boundary integral equations with the moving least-squares approximations. This paper presents the mathematical derivation of a posteriori error estimates and adaptive refinement procedures for the GBNM for 3D potential problems. Two types of error estimators are developed in detail. One is a perturbation error estimator that is formulated based on the difference between numerical solutions obtained using two successive nodal arrangements. The other is a projection error estimator that is formulated based on the difference between the GBNM solution itself and its L2-orthogonal projection. The reliability and efficiency of both types of error estimators is established. That is, these error estimators are proven to have an upper and a lower bound by the constant multiples of the exact error in the energy norm. A localization technique is introduced to accommodate the non-local property of integral operators for the needed local and computable a posteriori error indicators. Convergence analysis results of corresponding adaptive meshless procedures are also given. Numerical examples with high singularities illustrate the theoretical results and show that the proposed adaptive procedures are simple, effective and efficient.  相似文献   

3.
The theory of material forces for a hyperelastic material is briefly presented using the translational invariance of the control volume. The theory is derived for the dynamical setting, while the numerical implementation is limited to the static case. The finite element (FE) method is used to solve the standard field equations. After obtaining the solution the material force balance is consistently discretized with FE. As a result of this post-processing discrete material forces are obtained. They are then used to set up an adaptive scheme, in which the magnitude of the material forces acts as an indicator for mesh refinement. Special consideration is given to the boundary, where two different refinement strategies are proposed. The two strategies are compared by studying the refinement process for three examples.  相似文献   

4.
A posteriori error estimates and an adaptive refinement scheme of first‐order least‐squares meshfree method (LSMFM) are presented. The error indicators are readily computed from the residual. For an elliptic problem, the error indicators are further improved by applying the Aubin–Nitsche method. It is demonstrated, through numerical examples, that the error indicators coherently reflect the actual error. In the proposed refinement scheme, Voronoi cells are used for inserting new nodes at appropriate positions. Numerical examples show that the adaptive first‐order LSMFM, which combines the proposed error indicators and nodal refinement scheme, is effectively applied to the localized problems such as the shock formation in fluid dynamics. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, an adaptive refinement procedure is proposed to be used with Discrete Least Squares Meshless (DLSM) method for accurate solution of planar elasticity problems. DLSM method is a newly introduced meshless method based on the least squares concept. The method is based on the minimization of a least squares functional defined as the weighted summation of the squared residual of the governing differential equation and its boundary conditions at nodal points used to discretize the domain and its boundaries. A Moving Least Square (MLS) method is used to construct the shape function making the approach a fully least squares based approach. An error estimate and adaptive refinement strategy is proposed in this paper to increase the efficiency of the DLSM method. For this, a residual based error estimator is introduced and used to discover the region of higher errors. The proposed error estimator has the advantages of being available at the end of each analysis contributing to the efficiency of the proposed method. An enrichment method is then used by adding more nodes to the area of higher errors as indicated by the error estimator. A Voronoi diagram is used to locate the position of the nodes to be added to the current nodal configuration. Efficiency and effectiveness of the proposed procedure is examined by adaptively solving two benchmark problems. The results show the ability of the proposed strategy for accurate simulation of elasticity problems.  相似文献   

6.
Recently, considerable effort has been devoted to the development of the so‐called meshless methods. Meshless methods still require considerable improvement before they equal the prominence of finite elements in computer science and engineering. One of the paths in the evolution of meshless methods has been the development of the element free Galerkin (EFG) method. In the EFG method, it is obviously important that the ‘a posteriori error’ should be approximated. An ‘a posteriori error’ approximation based on the moving least‐squares method is proposed, using the solution, computed from the EFG method. The error approximation procedure proposed in this paper is simple to construct and requires, at most, nearest neighbour information from the EFG solution. The formulation is based on employing different moving least‐squares approximations. Different selection strategies of the moving least‐squares approximations have been used and compared, to obtain optimum values of the parameters involved in the approximation of the error. The performance of the developed approximation of the error is illustrated by analysing different examples for two‐dimensional (2D) potential and elasticity problems, using regular and irregular clouds of points. The implemented procedure of error approximation allows the global energy norm error to be estimated and also provides a good evaluation of local errors. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, an adaptive refinement procedure using the reproducing kernel particle method (RKPM) for the solution of 2D elastostatic problems is suggested. This adaptive refinement procedure is based on the Zienkiewicz and Zhu (ZZ) error estimator for the a posteriori error estimation and an adaptive finite point mesh generator for new point mesh generation. The presentation of the work is divided into two parts. In Part I, concentration will be paid on the stress recovery and the a posteriori error estimation processes for the RKPM. The proposed error estimator is different from most recovery type error estimators suggested previously in such a way that, rather than using the least-squares fitting approach, the recovery stress field is constructed by an extraction function approach. Numerical studies using 2D benchmark boundary value problems indicated that the recovered stress field obtained is more accurate and converges at a higher rate than the RKPM stress field. In Part II of the study, concentration will be shifted to the development of an adaptive refinement algorithm for the RKPM.  相似文献   

8.
Abstract

In this study, numerical integration based on Block-Pulse functions and Chebyshev wavelets are employed for Element Free Galerkin approximation. Moving Least Squares (MLS) approach is used to construct shape functions with optimized weight functions and basis. The proposed techniques are implemented on singularly-perturbed boundary-value problems with two-point boundary conditions. Numerical results for two examples are presented in this article to show the pertinent features for the proposed technique. Comparison with existing techniques shows that our proposed method based on integration technique provides better approximation at reduced computational cost. Moreover the effect of perturbation parameter on solution of test problems has been studied.  相似文献   

9.
In References 1 and 2 we showed that the error in the finite-element solution has two parts, the local error and the pollution error, and we studied the effect of the pollution error on the quality of the local error-indicators and the quality of the derivatives recovered by local post-processing. Here we show that it is possible to construct a posteriori estimates of the pollution error in any patch of elements by employing the local error-indicators over the mesh outside the patch. We also give an algorithm for the adaptive control of the pollution error in any patch of elements of interest.  相似文献   

10.
The meshless Galerkin boundary node method is presented in this paper for boundary-only analysis of three-dimensional elasticity problems. In this method, boundary conditions can be implemented directly and easily despite the employed moving least-squares shape functions lack the delta function property, and the resulting system matrices are symmetric and positive definite. A priori error estimates and the consequent rate of convergence are presented. A posteriori error estimates are also provided. Reliable and efficient error estimators and an efficient and convergent adaptive meshless algorithm are then derived. Numerical examples showing the efficiency of the method, confirming the theoretical properties of the error estimates, and illustrating the capability of the adaptive algorithm, are reported.  相似文献   

11.
This contribution presents an extended global derivative recovery for enriched finite element methods (FEMs), such as the extended FEM along with an associated error indicator. Owing to its simplicity, the proposed scheme is ideally suited to industrial applications. The procedure is based on global minimization of the L2 norm of the difference between the raw strain field (C?1) and the recovered (C0) strain field. The methodology engineered in this paper extends the ideas of Oden and Brauchli (Int. J. Numer. Meth. Engng 1971; 3 ) and Hinton and Campbell (Int. J. Numer. Meth. Engng 1974; 8 ) by enriching the approximation used for the construction of the recovered derivatives (strains) with the gradients of the functions employed to enrich the approximation employed for the primal unknown (displacements). We show linear elastic fracture mechanics examples, both in simple two‐dimensional settings, and for a three‐dimensional structure. Numerically, we show that the effectivity index of the proposed indicator converges to unity upon mesh refinement. Consequently, the approximate error converges to the exact error, indicating that the error indicator is valid. Additionally, the numerical examples suggest a novel adaptive strategy for enriched approximations in which the dimensions of the enrichment zone are first increased, before standard h‐ and p‐adaptivities are applied; we suggest to coin this methodology e‐adaptivity. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
A simple a-posteriori error estimation for adaptive BEM in elasticity   总被引:2,自引:0,他引:2  
In this paper, the properties of various boundary integral operators are investigated for error estimation in adaptive BEM. It is found that the residual of the hyper-singular boundary integral equation (BIE) can be used for a-posteriori error estimation for different kinds of problems. Based on this result, a new a-posteriori error indicator is proposed which is a measure of the difference of two solutions for boundary stresses in elastic BEM. The first solution is obtained by the conventional boundary stress calculation method, and the second one by use of the regularized hyper-singular BIE for displacement derivative. The latter solution has recently been found to be of high accuracy and can be easily obtained under the most commonly used C 0 continuous elements. This new error indicator is defined by a L 1 norm of the difference between the two solutions under Mises stress sense. Two typical numerical examples have been performed for two-dimensional (2D) elasticity problems and the results show that the proposed error indicator successfully tracks the real numerical errors and effectively leads a h-type mesh refinement procedure.  相似文献   

13.
This paper presents a new stress recovery technique for the generalized/extended finite element method (G/XFEM) and for the stable generalized FEM (SGFEM). The recovery procedure is based on a locally weighted L2 projection of raw stresses over element patches; the set of elements sharing a node. Such projection leads to a block-diagonal system of equations for the recovered stresses. The recovery procedure can be used with GFEM and SGFEM approximations based on any choice of elements and enrichment functions. Here, the focus is on low-order 2D approximations for linear elastic fracture problems. A procedure for computing recovered stresses at re-entrant corners of any internal angle is also presented. The proposed stress recovery technique is used to define a Zienkiewicz-Zhu (ZZ) a posteriori error estimator for the G/XFEM and the SGFEM. The accuracy, computational cost, and convergence rate of recovered stresses together with the quality of the ZZ estimator, including its effectivity index, are demonstrated in problems with smooth and singular solutions.  相似文献   

14.
An a posteriori error estimator is proposed in this paper for the p‐ and hp‐versions of the finite element method in two‐dimensional linear elastostatic problems. The local error estimator consists in an enhancement of an error indicator proposed by Bertóti and Szabó (Int. J. Numer. Meth. Engng. 1998; 42 :561–587), which is based on the minimum complementary energy principle. In order to obtain the local error estimate, this error indicator is corrected by a factor which depends only on the polynomial degree of the element. The proposed error estimator shows a good effectivity index in meshes with uniform and non‐uniform polynomial distributions, especially when the global error is estimated. Furthermore, the local error estimator is reliable enough to guide p‐ and hp‐adaptive refinement strategies. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Methods for a posteriori error estimation for finite element solutions are well established and widely used in engineering practice for linear boundary value problems. In contrast here we are concerned with finite elasticity and error estimation and adaptivity in this context. In the paper a brief outline of continuum theory of finite elasticity is first given. Using the residuals in the equilibrium conditions the discretization error of the finite element solution is estimated both locally and globally. The proposed error estimator is physically interpreted in the energy sense. We then present and discuss the convergence behaviour of the discretization error in uniformly and adaptively refined finite element sequences.  相似文献   

16.
This is a paper presented in two parts dealing respectively with error analysis and adaptive processes applied to finite element calculations. Part I contains the basic theory and methods of deriving error estimates for second-order problems. Part II of the paper deals with the strategy for adaptive refinement and concentrates on the p-convergent methods. It is shown that an extremely high rate of convergence is reached in practical problems using such procedures. Applications to realistic stress analysis and potential problems are presented.  相似文献   

17.
This is a paper presented in two parts dealing respectively with error analysis and adaptive processes applied to finite element calculations. Part I contains the basic theory and methods of deriving error estimates for second-order problems. Part II of the paper deals with the strategy for adaptive refinement and concentrates again on the p-convergent methods. It is shown that an extremely high rate of convergence is reached in practical problems using such procedures. Applications to realistic stress analysis and potential problems are presented.  相似文献   

18.
This paper addresses the issue of a p‐adaptive version of the generalized finite element method (GFEM). The technique adopted here is the equilibrated element residual method, but presented under the GFEM approach, i.e., by taking into account the typical nodal enrichment scheme of the method. Such scheme consists of multiplying the partition of unity functions by a set of enrichment functions. These functions, in the case of the element residual method are monomials, and can be used to build the polynomial space, one degree higher than the one of the solution, in which the error functions is approximated. Global and local measures are defined and used as error estimator and indicators, respectively. The error indicators, calculated on the element patches that surrounds each node, are used to control a refinement procedure. Numerical examples in plane elasticity are presented, outlining in particular the effectivity index of the error estimator proposed. Finally, the ‐adaptive procedure is described and its good performance is illustrated by the last numerical example. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, an error estimator that quantifies the effect of the finite element discretization error on the computation of the stress intensity factor in linear elastic fracture mechanics is presented. In order to obtain the proposed estimator, a shape design sensitivity analysis (SDSA) is applied to the fracture mechanics problem. Following this approach, one of the most efficient post‐processing techniques for computing the strain energy release rate G, the well‐known EDI method, may be interpreted as a continuum method of the SDSA. The proposed error estimator is based on the recovery of the gradient fields and its reliability has been checked by means of numerical problems, yielding very good estimations of the true error. The new estimator remarkably improves the results given by a previous error estimator, which is based on a discrete analytical approach of SDSA. As a consequence, the combination of the new error estimator and the result given by the EDI method provides a much more accurate estimation of G. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
When using the boundary element method, the accuracy of the numerical solution depends critically on the discretization of the boundary into elements (panels). The distribution of the panels is one of the most important decisions taken when analyzing a problem, but still the vast majority of users employ empirical guidelines to distribute the panels. This paper reviews the various adaptive schemes that have been proposed for boundary elements. Numerical results are obtained for infinite fluid flow problems and free surface problems and are used to assess the reliability and effectiveness of each method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号