首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of very low concentrations of H2 35S from air on to thin foil samples of lead was investigated using a continuous flow technique. The H2S uptake rate was constant at r.t. over the r.h. range 40–80% but increased markedly from 80–100% r.h. Autoradiography revealed a non-uniform adsorption in the low relative humidity range changing to a uniform uptake from 80–100% r.h. The possible nature of the adsorption sites, and the role of water vapour in the adsorption process is discussed.  相似文献   

2.
The effect of the halides (Cl?, Br? and I?) on the rates of the hydrogen evolution reaction (h. E. R.) and hydrogen penetration (h. P.) of iron in H2SO4 is determined. The H. E. R. and H. P. of Fe in these same electrolytes with the addition of H2S are also studied. The inhibition of corrosion and h. p. in the H2S environment by hexynol are compared. With halide addition her., icorr and h. p. decreased in the following order, Cl?> Br?> I?. H2S catalyzed both the h. e. r. and h. p. The catalytic activity does not appear dependent on the H2S concentration for the H. E. R. but does for H. P. The fraction of hydrogen generated which is absorbed by Fe is greater during corrosion when a new surface is formed continuously than during cathodic polarization. The addition of the acetylenic alcohol, hexynol, in H2SO4 containing H2S and halides inhibited the h. e. r. corrosion and h. p.  相似文献   

3.
The effect of Cl ion on the anodic dissolution of iron in H2SO4 solutions containing low H2S level has been studied by electrochemical polarization curve measurements. The total energy and binding energy of the competitive adsorption for Cl and HS ions have been calculated with CNDO/2 method, as well as the net charge distribution of iron atoms at an anodic potential. The results showed that certain concentration of Cl ion inhibit the anodic reaction of iron accelerated by HS. However, when Cl ion reached saturated adsorption, it began to promote the anodic reaction of iron due to the increased negative charge of iron atoms.  相似文献   

4.
选取TiO2为钛源、Li2CO3为锂源,采用高温固相法合成锂吸附剂前躯体Li2TiO3,并探讨锂钛比、焙烧温度、焙烧时间等因素对合成Li2TiO3性质的影响.将Li2TiO3用一定浓度的盐酸酸洗脱锂后制得偏钛酸型锂吸附剂H2TiO3,酸洗过程中锂的抽出率达到98.86%,而离子筛中的钛溶损却很小.采用XRD和SEM等分析手段对TiO2、Li2TiO3和H2TiO3及其吸附锂后的样品进行表征.最后应用伪一级和伪二级动力学方程对H2TiO3的吸附性能进行研究,并对吸附过程进行拟合从而计算相应的速率常数.结果表明:H2TiO3对锂离子具有较大的吸附能力,吸附过程符合伪二级动力学方程,表明吸附过程主要为化学吸附:在LiCl溶液中的吸附平衡数据符合Langmuir 等温吸附方程,表明吸附过程为单层吸附.  相似文献   

5.
The inhibition of corrosion of a steel surface by an inhibitor, tributyl(cyclohexyl)ammonium chloride (TBCA), was investigated by gravimetric and electrochemical polarization measurements in various aqueous solutions of HCl and H2SO4 acids. It is known that the most extensive corrosive destruction proceeds during the initial stage of contact between the metallic surface and the aggressive surroundings. The change from H2SO4 to HCl considerably decreases the time for formation of an adsorption layer. The high adsorption of the surface‐active cationic TBCA on the steel electrode surface can be explained by the specific adsorption of Cl? anions increasing the negative charge on the electrode surface. It was observed that the value of the polarizing current can be increased from time to time by addition of more TBCA inhibitor. This fact can be explained by the low stability of the film‐forming layer on the steel. A similar decrease of the protective effect was also observed in HCl solution. The inhibitor provides at least a slowing of the corrosion process (τ = 21 min). It was found that an increase in H2SO4 concentration from 1.0 to 0.2 N did not change the protective action of the inhibitor and had rather high values (θ = 283 ma/h, ψ = 84%, and τ = 14 min at [I] = 3.5 × 10?4 mol/L). It was shown that the attraction constant has a negative value (A = ?1.5 and Ka = 22.3) for the inhibitor, which relates to a high value for the adsorption ability of TBCA in HCl solution and therefore with the intermolecular repulsive force between adsorption molecules having similar charges. The protective action of TBCA increases with an increase in temperature, which is correlated with the chemical nature of its adsorption on the steel surface.  相似文献   

6.
The short term (∼100 h) oxidation behaviour of the 9%Cr steel P91 was studied at 650 °C in N2-O2-H2O gas mixtures containing a relatively low oxygen level of 1%. The oxidation kinetics were measured thermogravimetrically and the oxide scale growth mechanisms were studied using H218O-tracer with subsequent analyses of oxide scale composition and tracer distribution by MCs+-SIMS depth profiling. The corrosion products were additionally characterised by light optical microscopy, SEM-EDX and XRD. It was found that the transition from protective, Cr-rich oxide formation into non-protective mixed oxide scales is governed by the ratio H2O(g)/O2 ratio rather than the absolute level of H2O(g). The results of the tracer studies in combination with the data obtained from experiments involving in situ gas changes clearly illustrated that under the prevailing conditions the penetration of water vapour molecules triggers the enhanced oxidation and sustains the high growth rates of the poorly protective Fe-rich oxide scale formed in atmospheres with high H2O(g)/O2 ratios. The experimental observations can be explained if one assumes the scale growth to be governed by a competitive adsorption of oxygen and water vapour molecules on external and internal surfaces of the oxide scales in combination with the formation of a volatile Fe-hydroxide during transient oxidation. The formation of the non-protective Fe-rich oxide scales is suppressed in atmospheres with low H2O(g)/O2 -ratios, and the healing of any such scale is promoted.  相似文献   

7.
The solubility of sulfur in chromia has been studied in H2-H2O-H2S tagged with35S at 973 and 1173 K at low oxygen and sulfur partial pressures typical for coal gasification-systems. For monocrystalline samples, it has been shown that sulfur-containing species are only present adsorbed on the surface of the specimens and can be removed by ultrasonic cleaning in acetone. The surface coverage after 4 weeks of exposure to H2-H2O-H2S was between 2.8 and 19.3% of a monolayer. In polycrystalline chromia, sulfur was located only in pores and cracks of the sample. In dense, compact areas of the specimens the solubility of sulfur was below the detection limit of autoradiography, which was estimated to be better than 0.17 ppm.  相似文献   

8.
The sulfidation of Fe-20% Cr-30% Mn, Fe-25%Cr-20%Mn and Fe-25% Cr was studied at 700°C in H2-H2S and the oxidation and sulfidation in H2-H2O-H2S after preoxidation in H2-H2O. The sulfidation rate is strongly increased for the Mn-containing alloys, layers of (Mn,Cr)S and (Mn,Fe)Cr2S4 are formed. Also the oxidation rate is enhanced compared to Fe-25% Cr by formation of MnCr2O4 instead of Cr2O3. The sulfidation after preoxidation leads to internal and external sulfidation of the Mn-containing alloys. With increasing oxygen pressure p(O2) = 10?26…10?22 atm. of the H2-H2O-H2S mixtures the sulfidation is suppressed, for the higher oxygen pressure 10?23 and 10?22 atm. fast oxidation prevails under formation of MnCr2O4. Manganese cannot increase the sulfidation resistance of alloys, in spite of the stability and low degree of disorder of its sulfide, since the mixed sulfide (Mn,Cr)S is formed which has a high degree of disorder, high diffusivities and high growth rate according to the doping effect of trivalent Cr3+.  相似文献   

9.
Nano-TiO2 was employed for the adsorption of gallium from aqueous solution in batch equilibrium experiments to investigate its adsorption properties. It was found that the adsorption efficiency of Ga(Ⅲ) was more than 96% at pH 3.0. The adsorption capacities and rates of Ga(Ⅲ) onto nano-TiO2 were evaluated as a function of solution concentration and temperature. The results were analyzed using the Langmuir adsorption isotherms. Adsorption isothermal data could be well interpreted by the Langmuir model. The mean energy of adsorption, 15.81 kJ·mol-1, was calculated from the D-R adsorption isotherm. The kinetic experimental data properly correlate with the pseudo-second-order kinetic model. The thermodynamic parameters for the process of adsorption have been estimated. The △ H Οand △ GΟvalues of gallium(Ⅲ) adsorption on nano-TiO2 showed an endothermic and spontaneous nature of adsorption.  相似文献   

10.
Stress corrosion cracking (SCC) behaviour of 316L stainless steel in CO2–H2S–Cl? environments with and without methyldiethanolamine (MDEA) was investigated by slow strain rate testing and scanning electron microscopy (SEM). The results show that elongation ratio, reduction in area ratio (RAR) and time to failure ratio (TTFR) of 316L stainless steel were low in CO2–H2S–Cl? environments. The corresponding fractography exhibited flat brittle fracture with quasi-cleavage pattern, indicative of high SCC susceptibility. Hydrogen penetration and corrosion pits could be responsible for the high SCC susceptibility of 316L stainless steel in this condition. For the CO2–H2S–Cl? environments in the presence of MDEA, 316L stainless steel possessed high ER, RAR and TTFR (nearly 100%). High SCC resistance of 316L stainless steel could be associated with MDEA induced removal of H2S/CO2 and absorption on the steel surface.  相似文献   

11.
The interaction between Pd2+ ions and Cu2-xS coating formed by three cycles and containing ~30 at.% of elementary S has been investigated by the methods of cyclic voltammetry and photoelectron spectroscopy (one cycle of coating formation includes treatment of the surface with Cu(I)+Cu(II) ammoniate solution, hydrolysis of the adsorbed copper compounds and sulphidation of copper oxygen compounds in Na2Sn solution). After exposure of such a coating to Pd2+ ions (1.7 mM PdCl2’ pH-2), an exchange as well as a redox interaction between the coating components and Pd2+ ions has been shown to occur. Due to this the amount of copper in the coating decreases from 2 to 4 times and that of sulphur from 1.5 to 5 times. The coating modified in such a way has been found to contain up to 75 at.% of palladium, ~90% of it being in a metallic state.

It has been determined that at the beginning So is bound into a soluble compound:

2Pd2+ + So + 3H2O → 2Pdo + H2SO3 + 4H+.

The Cu2S present in the coating is considered to interact with Pd2+, with the formation of Pd0 and CuPdS2’, while CuS reacts most likely according to the reaction:

CuS + 3Pd2+ + 3H2O → 3Pdo; + H2SO3 + Cu2+ + 4H+.

The Cu2-xS +So coating formed on a dielectric and modified with Pd2+, contrary to the initial Cu2-xS +So coating, can be plated with copper from any electrolyte for copper deposition.  相似文献   

12.
Electro-chemical investigations into the corrosion of iron in solutions containing sulphides In order to investigate the corrosion behaviour of steel reinforcements in concrete containing sulphides, measurements have been carried out of electro-chemical current potentials. The electrode material consisted of carbonyl iron; the air-less electrolyte solutions had varying contents of H2S, HS. and S?, with a PH value ranging from 4 to 12.6. The tests showed that, with PH= 12.6, iron remains protected by a passive oxide film even in a solution containing sulphur. However, from about PH = 10-11 downwards, the passive film is replaced by a non-protective iron sulphide layer. But at least down to PH = 9, the corrosion rate is still very low due to the strong inhibition of the cathodic part-reaction of the hydrogen segregation. The kinetics of the hydrogen segregation due to H2S reduction are discussed.  相似文献   

13.
Oil well acidizing is a common practice used to boost oil well productivity in the industry. This practice, however, exposes the mild steel components of the wells to extremely harsh corrosive environments. Under such conditions, highly efficient inhibitors are used to minimize corrosion attack. In the present study, corrosion inhibition of mild steel in simulated acidic medium saturated with CO2 and H2S gases by a newly synthesized polyurea-based material (PUCorr-1) was investigated. Electrochemical studies supported with quantum chemical density-functional theory calculations and surface characterization revealed that PUCorr-1 adsorbs onto mild steel through a chemisorption mechanism yielding a stable protective film. The polyurea exhibited an excellent efficiency of 99.9% at a temperature of 50°C and a low concentration of 100 ppm, yielding a corrosion current density of 0.3 µA/cm2. In the presence of CO2 and H2S gases, PuCorr-1 exhibited a remarkable performance (>93% efficiency) making it a potential corrosion inhibitor in industrial processes that involve the use of acid solutions in the presence of CO2 and H2S gases.  相似文献   

14.
The oxidation of an alumina forming Fe-200-10Al alloy was studied in situ. The gas phase components in isotopically labeled 10 mbar O2/H2O-gas mixtures were measured from a virtually closed system at 920°C. Oxidation rates and oxygen-exchange rates were measured and related to each other. From the exchange rates the dissociation rates of O2 and H2O were calculated. These dissociation rates were in the early stage of oxidation found to be the same as the oxidation rate. The rate of oxygen exchange with the oxide can exceed the oxidation rate. From this follows that in analysis of a two-stage oxidation in16,16O2/18,18O2 the exchange rate of O between the oxide and gas phase has to be considered. The oxides formed in H2O containing gas had a H/O-ratio of 0.1. Vacuum annealing of the alloy before oxidation increased the oxidation rate by a factor of 2.  相似文献   

15.
Quantum chemical modeling (at DFT-B3LYP level) of the adsorption of Cl? and H2O particles on top and into hollow sites of defect-free low index faces of copper, silver, and gold simulated by n-atomic clusters with n = 9 to 17 is carried out. The validity of simulations is confirmed by the comparison to the available literature data on the work function of the metals and the calculated gas-phase adsorption of chlorine. Relative effects of the chemical (metal nature), macrostructural (crystal face), and coordination (adsorption site) factors on the parameters of the chemisorption bond and molecular characteristics of the adsorbate and adsorbent, namely, the E ads ads adsorption energy at % = 0K, R (Me? Cl?) and R(Me-O) adsorption bond lengths, Q effective charges of chlorine atom and water molecule, O-H distance and ∠HOH angle in H2O molecule, deviation of the H2O dipole moment vector from normal orientation to the cluster surface, and E HOMO energies of the highest occupied molecular orbital of Me n , [Me n Cl]?, Me n H2O, and [Me n ClH2O]? clusters, are considered. The inner hydration shell of Cl? is shown to involve six water molecules, the most stable configuration of (H2O)6 cluster being prism-like. An electron density shift from chlorine and water molecule to the metal cluster is found to accompany the adsorption and be more pronounced in the case of anion. The character of differences in the hydrophilicity of the group 1B metals and their diverse crystal faces is discussed. The role of hydration effects in the chemisorption of chloride ion on copper, silver, and gold is analyzed in terms of the continuum, molecular, and combined molecular-continuum models.  相似文献   

16.
Effects of silicon and of carbon on the sulfidation of iron The corrosive attack of steels by H2S under FeS formation is impeding the use of heat exchangers in processes in which sulfidizing gases occur at low oxygen pressures – the project was aimed at finding ways and means to retard or suppress the FeS growth. Thermogravimetric investigations in H2? H2S at 400 °C showed that during the first 100 h of sulfidation a transition takes place from the linear kinetics controlled by the phase boundary reaction H2S ? S (in FeS) + H2 to the parabolic kinetics controlled by solid state diffusion in the corrosion products. During this transition the linear constant decreases with time and increasing sulfur activity as at the FeS surface (k1 ? 1/as). Upon sulfidation of Fe-6%Si an internal Fe3Si layer is formed te sulfidation is retarded since for long time ( 100 h) the slow surface reaction at high as is rate determining. Carbon deposits formed in carburizing atmospheres (ac 1) on the iron surface, have a negligible effect on the sulfidation. Only graphitization of the iron surface at 700 °C after preceding carbon saturation at 1000 °C in CH4? H2 has an initially retarding effect. This study demonstrated possibilities of retarding the H2S corrosion by Si or C which, however, are rather limited.  相似文献   

17.
The sulfurization of copper by atmospheric gases is widely recognized, but the importance of the potential causative agents of sulfurization and the mechanisms involved have remained unresolved. In this work, polycrystalline copper has been exposed to the atmospheric gases hydrogen sulfide (H2S), carbonyl sulfide (OCS), carbon disulfide (CS2), and sulfur dioxide (SO2) in humidified air under carefully controlled laboratory conditions. At room temperature, the rates of sulfurization by H2S and OCS are comparable, and are some two orders of magnitude greater than those by CS2 and SO2. Given the atmospheric concentrations of these gases, it is clear that OCS is the principal cause of atmospheric sulfurization of copper except near sources of the gases where high concentrations may render H2S (and possibly SO2) important. At constant absolute humidity, the sulfurization rate of copper by OCS is found to be inversely proportional to temperature over the range 21–80°C, a property attributed to reduced quantities of surface water at high temperatures and the subsequent decrease in the rate of hydrolytic transformation of OCS into a reactive form. In a final series of experiments, the initial sulfurization of copper by 2.2 ± 0.2 ppm H2S in humidified air at 22°C has been studied in detail. The first stages of sulfurization involve rapid attack by H2S at surface defect sites. As these corrosive mounds spread and merge, diffusion of copper to the surface is impeded and the fraction of H2S molecules striking the surface that become incorporated into the corrosion film drops sharply from ~ 5 × 10?5 (at t = 5 s) to ~ 8 × 10?7 (at t = 72 h).  相似文献   

18.
The reaction between pure nickel and H2S-H2 mixtures containing 1–65% H2S has been studied over the temperature range 450–600°C. The sulfidation of nickel in the temperature range 560–600°C has been found to follow a linear rate law at low concentrations of H2S and a parabolic rate law at higher concentrations (10% and 65% H2S); X-ray examination of the scale formed on the metal showed it to be almost entirely -Ni3S2. On the basis of the kinetics and marker studies it can be concluded that the sulfide scale on nickel is formed by the outward transport of the metal and the inward transport of sulfur. In the temperature range 450–500°C the sulfidation of nickel follows a parabolic rate law. In mixtures containing 10% H2S the scale formed contains voids, the occurrence of which is connected with formation of Ni7S6. It has also been shown that the rate of transport through the Ni3S2 layer has an essential influence on the formation of a continuous layer of Ni7S6. Marker studies have shown that both nickel and sulfur appear to be mobile in -Ni3S2.  相似文献   

19.
The sulphidation of cobalt-tantalum-carbon alloys containing 10 and 15 wt% Ta and carbon in the range 0–1 wt%, was carried out in H2-H2S mixture containing 10% by volume H2S. The reaction kinetics at 800–1000°C were followed thermo-gravimetrically and the scale products examined in detail using metallographic and X-ray diffraction techniques. In these sulphidation conditions (10% H2S – 90% H2) addition of 10 and 15% Ta to cobalt was unable to suppress the formation of liquid cobalt-rich sulphides; consequently, very rapid rates of alloy consumption were attained. Decreasing the temperature resulted in the distribution of the tantalum sulphides in a fine scale. Transport of cobalt through the inner layer was sufficiently rapid to form an outer, molten sulphide layer. The inability of tantalum-rich sulphides to develop into a continuous layer appears to be responsible for the disappointing effect of tantalum on the sulphidation resistance. Increasing carbon contents in the alloy increase the sulphidation rate, but the increase is not very dramatic.  相似文献   

20.
Fenugreek seeds extract was examined as a green corrosion inhibitor for Zn in 2.0 mol/L H2SO4 and 2.0 mol/L HCl solutions by mass loss and electrochemical measurements. Scanning electron microscope (SEM) images show that the surface damage is decreased in the presence of the inhibitor. X-rays photoelectron spectroscopy (XPS) analysis was performed to identify the corrosion product, ZnO, and to prove the inhibitor adsorption mechanism. The maximum inhibition efficiency values are 90.7% after 1 h and 66.6% after 0.5 h by 200 mL/L of fenugreek extract in H2SO4 and HCl solutions, respectively. Addition of I ion greatly improves the inhibition efficiency of fenugreek seeds extract for Zn corrosion in HCl due to the synergistic effect. Potentiodynamic polarization and EIS measurements prove the inhibition ability of fenugreek for Zn corrosion in HCl as indicated by the decreased corrosion current density and increased charge transfer resistance values in the presence of fenugreek.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号