首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PURPOSE: To assess the potential of a clinical method of optic disc measurement in the detection of early neuroretinal rim loss in glaucoma. METHODS: A method of disc biometry based on indirect ophthalmoscopy was used to estimate disc and neuroretinal rim areas in 81 ocular hypertensive eyes of 43 patients and in 28 fellow eyes with normal visual fields of patients with unilateral visual field loss from primary open-angle glaucoma. The results were compared with those from age-matched visually normal patients. RESULTS: Neuroretinal rim area was significantly smaller in both hypertensive and fellow eye groups compared with controls (P < 0.0001; P = 0.0009). Disc area also was smaller in both groups (P = 0.0034; P = 0.046); however, this was inadequate to explain the differences in rim area, which, when corrected for disc size, were still highly significant (P < 0.0001; P = 0.0001). CONCLUSION: The differences in neuroretinal rim area observed are likely to indicate that a proportion of the eyes studied had suffered a reduction of neuroretinal rim area, which was measurable by this method at a stage before the development of demonstrable visual field loss.  相似文献   

2.
BACKGROUND: To compare neuroretinal rim area measurements by confocal scanning laser tomography and planimetric evaluation of optic disc photographs. METHODS: For 221 patients with primary and secondary open angle glaucoma, 72 subjects with ocular hypertension, and 139 normal subjects, the optic disc was morphometrically analysed by the confocal scanning laser tomograph HRT (Heidelberg retina tomograph) and by planimetric evaluation of stereo colour optic disc photographs. RESULTS: Absolute rim area and rim to disc area were significantly (p < 0.0001) larger with the HRT than with planimetric evaluation of photographs. Differences between the two methods were significantly (p < 0.01) larger in normal eyes with small cupping than in normal eyes with large cupping, and differences were significantly (p < 0.01) larger in glaucomatous eyes with marked nerve damage than in glaucomatous eyes with moderate nerve damage. Coefficients of correlations between rim measurements of both methods were R2 = 0.60 for rim to disc area and R2 = 0.33 for absolute rim area. Planimetric measurements of rim area correlated significantly (p < 0.05) better than HRT determinations of rim area with mean visual field defect and retinal nerve fibre layer visibility. CONCLUSIONS: Measurements of absolute rim area and rim to disc area are significantly larger with the HRT compared with planimetry of disc photographs. Differences between both methods depend on disc area, cup size and glaucoma stage. The reason may be that the HRT measures the retinal vessel trunk as part of the neuroretinal rim. The differences between both methods, which should be taken into account if disc measurements performed by both methods are compared with each other, may not influence the main advantage of the HRT--that is, morphological follow up examination of patients with glaucoma.  相似文献   

3.
Since the distribution of the retinal nerve fiber layer (RNFL) is not regular, this study was performed to evaluate the normal regional variation in its ophthalmoscopic appearance. Wide-angle red-free photographs of the RNFL and color stereo optic disc slides of 195 normal eyes of 119 subjects were morphometrically examined. The RNFL was most visible in the temporal inferior sector, with the neuroretinal rim being correspondingly broadest (P < 0.001) and the diameter of the corresponding retinal artery the widest; these parameters were found to diminish appreciably in the temporal superior sector, the nasal superior sector, and the nasal inferior sector in this order. The visibility of the RNFL in a particular region therefore correlates positively with the rim width and retinal artery caliber in that region, the RNFL being most detectable in the temporal inferior part of the fundus. This may be important in the evaluation of eyes with optic nerve damage.  相似文献   

4.
OBJECTIVE: To search a sensitive parameter for the early diagnosis of primary open angle glaucoma (POAG). METHOD: A system of computerized image analysis was used to acquire images of the optic nerve head of patients with POAG, suspect glaucoma (SG) and of normal persons. Each of these groups contained 31 eyes of 31 cases. The mean relative depths of disc rim and cup at different areas in the optic nerve head were measured. All these patients were followed up for four to six months, and the changes of the mean depths of every sector were compared between each pair of the three groups with statistic analysis. RESULTS: The mean depth of the neural rim and cup of each sector and that of total rim and total cup of POAG and SG patients were all deeper than that of normal controls. The mean depths of neural rim of the superior sector, inferior sector and the total rim area of POAG were deeper than that of SG patients. Compared to their first measurements, the changes of mean depths of neural rim of superior sector and total neural rim area of POAG patients were more prominent than that of normal controls and SG. We also compared the relative depth of the total rim area in the different areas in the optic nerve head with other two dimensional optic disc parameters such as cup/disc ratio, etc. CONCLUSION: Our study suggests that three-dimensional stereoscopic measurement of the surface of optic nerve head and follow-up be of paramount importance in the early diagnosis of POAG patients.  相似文献   

5.
BACKGROUND: Detailed fluorescein angiographic findings in the disc circumference may be useful for evaluating the possible relation of the circumference to glaucomatous nerve damage. METHODS: Fluorescein angiograms of 25 eyes of 25 subjects with primary open angle glaucoma were observed after they had undertaken Octopus perimetry. Based on the retinotopic projection, disc sectors and corresponding visual field regions were set. RESULTS: Twenty three eyes (92%) showed a zone of no fluorescence around the disc (non-fluorescent zone). Of these, the zone width of the 20 eyes that had visible ciliary vessels within the zone was wider than that of the other three eyes, and showed fluorescein diffusion from the outer boundary of the zone towards the disc. The diffusion reached the disc if the zone was narrow. In those 20 eyes, a standardised difference in the zone width of inferior temporal sector minus superior temporal sector correlated with the difference in mean loss of corresponding visual field regions (r = 0.48, p = 0.0312). CONCLUSION: The visible ciliary vessels suggest the absence of the choriocapillaris in the non-fluorescent zone, the width of which correlated with the visual field defect and may affect the amount of the fluorescein diffusion to the disc. This suggests that the diffusion might be related to optic nerve damage in glaucoma.  相似文献   

6.
AIM: In an attempt to use the quantitative optic disc measurements of the Glaucoma-Scope (OIS Sacramento, CA, USA) to distinguish glaucomatous from normal optic discs, a new variable was investigated, the mean disc corrected for the disc size by dividing by the disc area: MP/D. METHODS: Glaucoma-Scope disc evaluation was performed on 81 eyes of 51 patients split into the following groups based on Humphrey 24-2 visual field and clinical criteria of glaucoma: chronic glaucoma n = 27 (including only early, n = 17, and low tension glaucoma, n = 10), ocular hypertension n = 24, pseudoglaucomatous large discs, n = 12, and normal eyes, n = 18. Classic optic disc variables (the vertical and horizontal c/d ratios, and the c/d area) were compared with the new MP/D index calculating receiver operating characteristic curves. RESULTS: The MP/D ratio was able to identify the glaucomatous eyes more easily than other ratios. Areas under the curves were: 0.91 (MP/D); 0.87 (c/d area); 0.85 (c/d vertical); and 0.80 (c/d horizontal). The MP/D index was also correlated with the mean deviation (r = 0.466; p = 0.001). CONCLUSION: MP/D may prove useful in detecting glaucomatous optic nerve damage and could be an interesting screening tool for primary open angle glaucoma.  相似文献   

7.
In normal eyes, the retinal nerve fiber layer (RNFL) is usually best visible in the inferior temporal part of the fundus, followed by the superior temporal region, the nasal superior region and the nasal inferior region. This distribution correlates with the configuration of the neuroretinal rim, the diameter of the retinal arterioles, the location of the foveola, and the lamina cribrosa morphology. With increasing age, the RNFL visibility decreases diffusely without preferring special fundus regions and without the development of localized defects. With all optic nerve diseases, the visibility of the RNFL is decreased in addition to the age-related loss, in a diffuse and/or a localized manner. The localized defects are wedge-shaped and not spindle-like defects, running toward or touching the optic disk border. Typically occurring in about 20% of all glaucoma eyes, they can be found also in other ocular diseases, such as optic disk drusen, toxoplasmotic retinochoroidal scars, longstanding papilledema or optic neuritis due to multiple sclerosis. Since they are not present in normal eyes, they almost always signify an abnormality. RNFL evaluation is especially helpful for early glaucoma diagnosis and in glaucoma eyes with small optic disks. In advanced optic nerve atrophy, other examination techniques, such as perimetry, may be more helpful for following optic nerve damage. Considering its great importance in the assessment of optic nerve anomalies and diseases and taking into account the feasibility of its ophthalmoscopic evaluation using green light, the retinal nerve fiber layer should be examined during any routine ophthalmoscopy.  相似文献   

8.
We examined the optic disk appearance in ocular hypertensive eyes that had a normal result of conventional computed perimetry. Color stereo-optic disk photographs of 104 ocular hypertensive subjects and of 216 normal individuals were morphometrically evaluated. In the ocular hypertensive eyes as compared to the normal eyes, significant differences (P < .0001) were detected for a smaller area and an abnormal shape of the neuroretinal rim, larger zones alpha and beta of the parapapillary chorioretinal atrophy, a decreased visibility of the retinal nerve fiber layer, and a higher frequency of localized nerve fiber layer defects. The variables most useful to indicate optic nerve damage were an abnormal shape of the neuroretinal rim and a decreased visibility of the nerve fiber layer. The most specific variable was the presence of localized retinal nerve fiber layer defects. Evaluation of these variables may be helpful for the early diagnosis of glaucoma.  相似文献   

9.
PURPOSE: Parapapillary chorioretinal atrophy, neuroretinal rim loss, and a decrease of retinal vessel diameter have been described to occur in glaucomatous eyes. This study was conducted to evaluate the frequency and degree of these signs in nonarteritic anterior ischemic optic neuropathy (AION). METHODS: We evaluated morphometrically and compared stereo color optic disc photographs of 17 patients after AION, 184 patients with primary open-angle glaucoma, and 98 normal subjects. RESULTS: The optic disc area and retinal vessel diameter were significantly smaller and the visibility of the retinal nerve fiber bundles was significantly reduced in patients after nonarteritic AION compared with that of the normal subjects. The optic disc shape, area, and form of zones alpha and beta of the parapapillary chorioretinal atrophy and the size and form of the neuroretinal rim did not differ significantly between these two groups. In the group of eyes with glaucoma, the neuroretinal rim was significantly smaller and the parapapillary chorioretinal atrophy was significantly larger than in the group of eyes with AION. Visibility of the retinal nerve fiber bundles and retinal vessel caliber did not differ statistically between the eyes with AION and those with glaucoma. CONCLUSIONS: These results indicate that the parapapillary chorioretinal atrophy is not larger in eyes after nonarteritic AION compared with normal eyes. They show that the area and shape of the neuroretinal rim, as determined planimetrically, may not markedly change after nonarteritic AION. They confirm previous reports on a small optic disc size as a risk factor for nonarteritic AION. They agree with findings of a reduced retinal vessel caliber in eyes with optic nerve damage, independently of the cause.  相似文献   

10.
OBJECTIVE: To determine the incidence of positive neuroradiologic studies in consecutive patients with glaucoma associated with normal intraocular pressure and to compare the psychophysical and clinical characteristics of these eyes with eyes with disc cupping associated with intracranial masses. DESIGN: Retrospective case-controlled study. PARTICIPANTS: Fifty-two eyes of 29 patients with glaucoma associated with normal intraocular pressure and 44 eyes of 28 control patients with compressive lesions were reviewed. INTERVENTION: The medical records of consecutive glaucoma patients with normal intraocular pressure who underwent brain magnetic resonance imaging or computed tomography scanning as part of a diagnostic evaluation between January 1, 1985, and July 1, 1995, were reviewed. A masked reading of optic nerve photographs and visual fields was performed by one observer. A similar analysis was performed on a control group of consecutive patients with nonglaucomatous optic nerve cupping with known intracranial mass lesions. MAIN OUTCOME MEASURES: The neuroradiologic findings, clinical characteristics, optic nerve head appearance, and patterns of visual field loss were compared between groups. RESULTS: None of the patients diagnosed with glaucoma had neuroradiologic evidence of a mass lesion involving the anterior visual pathway. Compared to control subjects, patients with glaucoma were older (P = 0.0001), had better visual acuity (P = 0.002), greater vertical loss of neuroretinal rim tissue (P = 0.0001), more frequent optic disc hemorrhages (P = 0.01), less neuroretinal rim pallor (P = 0.0001), and more nerve fiber bundle visual field defects aligned at the horizontal midline (P = 0.0001). Visual acuity less than 20/40, vertically aligned visual field defects, optic nerve pallor in excess of cupping, and age younger than 50 years were 77%, 81%, 90%, and 93% specific for nonglaucomatous cupping associated with compressive lesions, respectively. CONCLUSIONS: Anterior visual pathway compression is an uncommon finding in the neuroradiologic evaluation of patients with a presumptive diagnosis of normal-tension glaucoma. Younger age, lower levels of visual acuity, vertically aligned visual field defects, and neuroretinal rim pallor may increase the likelihood of identifying an intracranial mass lesion.  相似文献   

11.
PURPOSE: To investigate the correlation between the deterioration in optic disc cupping during the chronic elevation of intraocular pressure (IOP) and the reversal of cupping during a subsequent reduction in IOP in experimental glaucoma. METHODS: We examined changes in the vertical and horizontal cup to disc ratios, the rim area to disc area ratio, and the cup volume to disc area ratio in 11 monkey eyes with laser-induced glaucoma using computerized stereo-image analysis. Correlations between changes in disc parameters during a spontaneous IOP reduction and changes in disc parameters during a period of chronic IOP elevation from baseline before laser exposure (baseline) to before the IOP reduction (pre-IOP reduction) and during the period from baseline to after the reduction in IOP (post-IOP reduction) were determined by linear regression analysis. RESULTS: All disc parameters improved significantly during IOP reduction and deteriorated significantly during the periods from baseline to the pre-IOP reduction and from baseline to the post-IOP reduction. The degree of reversal in disc parameters was correlated with the deterioration from baseline to the pre-IOP reduction and from baseline to the post-IOP reduction in the vertical cup to disc ratio (r = 0.68, P = 0.0218 and r = 0.97, P < 0.0001, respectively), the horizontal cup to disc ratio (r = 0.57, P = 0.0649 and r = 0.98, P < 0.0001, respectively), the rim area to disc area ratio (r = 0.68, P = 0.0227 and r = 0.98, P < 0.0001, respectively), and the cup volume to disc area ratio (r = 0.67, P = 0.0256 and r = 0.88, P = 0.0004, respectively). CONCLUSION: The degree of deterioration in cupping from baseline before the induction of glaucoma may be an important determinant of the degree of cupping reversal during subsequent reductions in IOP in primate glaucoma.  相似文献   

12.
PURPOSE: The purpose of this retrospective study is to compare the measurements of intrapapillary and peripapillary parameters between two observers and test the usefulness of measuring different types of crescents. METHODS: Optic disc photographs of 23 eyes of 23 patients with glaucoma and 23 age-matched normal eyes were measured in Oulu and in Erlangen using manual planimetric techniques. The authors measured the following magnification corrected intrapapillary and peripapillary areas: optic disc, neuroretinal rim, cup: disc area ratio, scleral ring, central (zone beta), and peripheral peripapillary atrophy (zone alpha). Twenty-one patients with glaucoma had a follow-up of 3.2 years (range, 1.1-4.7 years), and follow-up for 19 control eyes was 3.7 years (range, 2.5-5.9 years). The measurements were performed in a masked fashion for the diagnosis and temporal sequence of the photographs. RESULTS: Central peripapillary atrophy (zone beta) was statistically significantly largest in primary open-angle glaucoma in both centers (Oulu, P=0.003; Erlangen, P=0.004), whereas normal and exfoliative eyes did not differ significantly from each other. The results for peripheral peripapillary atrophy (zone alpha) and scleral ring were less consistent. Despite statistically significant interobserver correlations ranging from r=0.30 (scleral ring area; P=0.0472) to r=0.97 (optic disc area; P=0.0001), the means of all parameters, except for zone alpha and beta, differed statistically significantly between the two observers. CONCLUSIONS: The central peripapillary atrophy, or zone beta, is the most reproducible parameter when measuring peripapillary atrophy in glaucoma. Nonetheless, its measurement is of limited usefulness in the recognition of glaucoma or progression of glaucomatous nerve damage.  相似文献   

13.
PURPOSE: This study aimed to define the confocal laser scanning ophthalmoscope (Heidelberg Retina Tomograph [HRT]) parameters that best separate patients with early glaucoma from normal subjects. STUDY DESIGN: A cross-sectional study. PARTICIPANTS: A total of 80 normal subjects and 51 patients with early glaucoma participated (average visual field mean deviation = -3.6 dB). INTERVENTION: Imaging of the optic nerve head with the HRT and analysis using software version 1.11 were performed. MAIN OUTCOME MEASURES: The relation between neuroretinal rim area and optic disc area, and cup-disc area ratio and optic disc area, was defined by linear regression of data derived from the normal subjects. The normal ranges for these two parameters were defined by the 99% prediction intervals of the linear regression between the parameter and optic disc area, for the whole disc, and for each of the predefined segments. Normal subjects and patients were labeled as abnormal if the parameter for either the whole disc or any of the predefined segments was outside the normal range. The sensitivity and specificity values of the method were calculated. RESULTS: The highest specificity (96.3%) and sensitivity (84.3%) values to separate normal subjects and those patients with early glaucoma were obtained using the 99% prediction interval from the linear regression between the optic disc area and the log of the neuroretinal rim area. Similar specificity (97.5%) and lower sensitivity (74.5%) values were obtained with the 99% prediction interval derived from regression between the disc area and cup-disc area ratios. Poor separation between groups was obtained with the other parameters. CONCLUSIONS: The HRT, using the technique of linear regression to account for the relationship between optic disc size and rim area or cup-disc area ratio, provides good separation between control subjects and patients with early glaucoma in this population.  相似文献   

14.
AIM: To evaluate the validity of cumulative rim/disc area (RA/DA) curve analysis as a clinical tool for the identification of glaucoma induced optic disc pathology. METHODS: 71 normal and 83 glaucomatous eyes were evaluated from a series of 154 subjects recruited for this study. For each eye, the cumulative distribution of RA/DA was calculated from 36 equally spaced rim sectors of each optic disc obtained by the automatic evaluation of simultaneous videographics (Image-net X Rev.3/51b). To increase the sensitivity of this analysis in early glaucoma and in normal eyes, these cumulative curves were subsequently divided into two equal segments and the slopes of their respective regression lines compared. RESULTS: The median RA/DA value obtained from the 36 sectors was significantly different in glaucomatous eyes compared with normals (p < 0.001). Nevertheless, the curves (5th-95th percentile of the cumulative curves distribution) of early glaucomatous eyes fell within the normal range. When the cumulative curve of these marginal cases was then divided into two equal segments, the comparison of the slopes of the regression lines showed a significant difference (p < 0.05) in 100% of early glaucomatous eyes. Furthermore, normal eyes were shown to be true negatives in 93% of the cases in which no significant difference between the two slopes was observed. CONCLUSION: Analysis of the RA/DA cumulative curve from 36 sectors of the optic disc was a valid method for the identification of glaucomatous disc pathology; however, a further calculation of the slopes of the two RA/DA regression lines was needed to identify early glaucomatous damage.  相似文献   

15.
OBJECTIVE: To determine whether parapapillary chorioretinal atrophy in patients with ocular hypertension remained stationary or progressed along with glaucomatous optic nerve damage. METHODS: The morphometric parameters and progression of parapapillary atrophy were retrospectively investigated, using serial photographs, in 350 eyes of 175 patients with ocular hypertension. The association of parapapillary atrophy progression with subsequent glaucomatous conversion and with other baseline patient- and eye-specific characteristics was analyzed. RESULTS: Progression in the area and extension of parapapillary atrophy before noticeable optic disc or visual field changes was observed in 48 (49.0%) of 98 eyes that converted to glaucoma, while parapapillary atrophy progression was noted in 25 (9.9%) of 252 ocular hypertensive eyes that did not develop glaucomatous damage (P<.001). The predictive sensitivity and specificity of this observation were 49% and 90%, respectively. In a logistic multiple regression model, the progression of parapapillary atrophy was associated with a family history of glaucoma (odds ratio, 2.7) and the initial size of zone beta (odds ratio, 1.64, for an increase of 0.10 of the zone beta area-disc area ratio). CONCLUSION: The progression of parapapillary chorioretinal atrophy may be an early glaucomatous finding in some patients with ocular hypertension.  相似文献   

16.
PURPOSE: To retrospectively examine the optic disc photographs of a glaucoma population for optic disc haemorrhages, vascular occlusions and vascular abnormalities. METHODS: The optic disc photographs of 906 eyes of glaucoma and suspect glaucoma patients were examined. Optic disc photographs were taken annually, where possible, with the follow-up period varying between 1 and 14 years duration (mean, 2.89). Glaucoma patients are regularly reviewed every 4-6 months and glaucoma suspects every 1-2 years, depending on the ophthalmologist. Low-tension glaucoma patients were reviewed more frequently (mean, every 2.6 months). The results of the findings were compared to a control group of 39 subjects with a mean follow-up period of 7 years, using Fisher's exact test. RESULTS: It was found that during the period under review, 7.4% (n = 67) of eyes had optic disc haemorrhages. The highest frequency of optic disc haemorrhages (37.5%) was found in the low tension glaucoma group (P = 0.0001) followed by 11% of primary open-angle glaucoma eyes (P = 0.03). In the normal group there were three eyes with optic disc haemorrhages and one with a disc collateral, which constitutes 5.1% vascular changes in this sub-group. Of the study eyes 2.8% had central retinal vein occlusions, 1.3% branch vein occlusion, 1.2% disc vessel abnormalities (loops) and 1.1% disc collaterals. Discrete nerve fibre layer haemorrhages and microaneurysms were found in 0.8% and 1.8% of eyes, respectively. CONCLUSIONS: A total of 16.8% of the eyes observed in this study had either disc haemorrhages or vascular changes. The underlying trend of vascular and haemorrhagic changes in glaucoma are demonstrated in this sample, which is in general agreement with previous studies. The high percentage of optic disc haemorrhages in low tension glaucoma is highlighted. The presence of microaneurysms and nerve fibre layer haemorrhages is interesting but of unknown significance.  相似文献   

17.
BACKGROUND: The assessment of the cup of the optic disc depends, among other criteria, on the disc area. A small cup in a small optic disc can indicate an advanced glaucomatous lesion, while on the other hand a large cup in a large optic disc can be normal. Therefore, a cumulative normalised rim/disc area ratio curve could help to distinguish between glaucomatous and normal optic cups. The aim of our study was to calculate normalised rim/disc area ratio curve. METHODS: Heidelberg Retina Tomograph examinations of the optic nerve head of 100 randomly selected eyes of 100 normal subjects were evaluated. We calculated the disc area-adjusted normalised rim/disc area ratio in sectors of 10 degrees. The 95th, 90th and 50th percentiles of each of the 36 sectors were displayed in descending order. RESULTS: In relation to the normal percentile curves, it is possible to display an individual normalised rim/disc area ratio curve. We obtained such curves for a normal optic disc, optic nerve heads with moderate and advanced lesions and a small optic disc with glaucomatous damage. CONCLUSION: We present a new display mode for the results of Heidelberg Retina Tomograph optic nerve head examination, which may be helpful for easy and reliable assessment of the local, diffuse and combined components of glaucomatous optic nerve head damage depending on optic disc size.  相似文献   

18.
AIMS: Progressive loss of neuroretinal rim tissue is known to occur early in glaucoma and measurement of the neuroretinal rim area is possible by magnification corrected analysis of optic disc photographs (planimetry). This study was performed to determine whether the facility to distinguish between glaucomatous and normal optic discs could be improved upon by: (a) taking into account the known relation between optic disc size and neuroretinal rim area, and (b) measuring rim area in a number of segments, in order to detect focal changes. METHODS: Planimetric examination of the optic disc photographs of 88 control subjects and 51 patients with early visual field defects was performed. In the control group, multiple linear regression analysis was performed between neuroretinal rim area and optic disc area, age, sex, eye side, refraction, and keratometry. This was repeated for the whole disc and for each of twelve 30 degree segments. Normal ranges were defined by the 98% prediction intervals of the regression analysis and the sensitivity and specificity for correct identification of optic discs in the two groups determined. RESULTS: Multiple linear regression demonstrated significant associations between the neuroretinal rim area and optic disc area and age in normal subjects. Sensitivity and specificity for glaucoma diagnosis, using the cut off derived from the 98% prediction intervals, was 37.7% and 98.9% respectively when total neuroretinal rim area alone was considered, and 88.7% and 94.3% respectively when the 30 degree segments were included. The most frequent pattern of neuroretinal rim loss was diffuse, followed by thinning in more than one sector and then by thinning in the inferotemporal sector alone. CONCLUSIONS: This method of optic disc analysis enables the examiner to identify glaucomatous optic discs at the stage of early perimetric loss with a high degree of precision. Optic disc photography is simple, and fundus cameras are widely available. This method for glaucoma case identification may therefore be suitable for the primary care setting as well as hospital practice.  相似文献   

19.
AIMS: To determine the age related changes in optic nerve head structure in a group of normal subjects and assess the significance of any changes in relation to those found in open angle glaucoma. METHODS: A group of 88 white volunteers and friends and spouses of patients with a normal visual field and normal intraocular pressure was studied. Two different imaging and measurement devices were used (computer assisted planimetry and scanning laser ophthalmoscopy), and the results from each were compared. Measurements were made of the optic disc, optic cup, and neuroretinal rim areas, and the vertical optic disc diameter and cup/disc diameter ratio. RESULTS: Neuroretinal rim area declined at the rate of between 0.28% and 0.39% per year. Vertical optic cup diameter and optic cup area increased with age. The mean cup/disc diameter ratio increased by about 0.1 between the ages of 30 and 70 years. CONCLUSIONS: Age related changes are significant and measurable, and should be taken into account when assessing the glaucoma suspect, and when estimating the rate of progression of glaucomatous optic neuropathy in patients with established disease.  相似文献   

20.
We evaluated the optic disc in 77 eyes of 77 normal volunteers using a scanning laser tomograph (Heidelberg Retina Tomograph: HRT, version 1.11). Particular attention was paid to age, refractive error, and disc size. The topographic parameters included: cup area, C/D area ratio, rim area, cup volume, rim volume, mean cup depth, maximum cup depth, cup shape measure, height variation contour, mean RNFL thickness, and RNFL cross section area. There was a significant decline in mean RNFL thickness and RNFL cross section area with increase in age (p < 0.05). The mean and maximum cup depths were significantly deeper in myopic eyes (p < 0.05). Large discs had large values of cup area, C/D area ratio, rim area, cup volume, mean cup depth, cup shape measure (p < 0.01), and maximum cup depth (p < 0.05). Large discs had small values of mean RNFL thickness and RNFL cross section area. Rim volume was independent of age, refractive error, or disc area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号