首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Airborne scanning LiDAR systems are used to predict a range of forest attributes. However, the accuracy with which this can be achieved is highly dependent on the sensor configuration and the structural characteristics of the forest examined. As a result, there is a need to understand laser light interactions with forest canopies so that LiDAR sensor configurations can be optimised to assess particular forest types. Such optimisation will not only ensure the targeted forest attributes can be accurately and consistently quantified, but may also minimise the cost of data acquisition and indicate when a survey configuration will not deliver information needs.In this paper, we detail the development and application of a model to simulate laser interactions within forested environments. The developed model, known as the LiDAR Interception and Tree Environment (LITE) model, utilises a range of structural configurations to simulate trees with variable heights, crown dimensions and foliage clumping. We developed and validated the LITE model using field data obtained from three forested sites covering a range of structural classes. Model simulations were then compared to coincident airborne LiDAR data collected over the same sites. Results indicate that the LITE model can be used to produce comparable estimates of maximum height of trees within plots (differences < 2.42 m), mean heights of first return data (differences < 2.27 m), and canopy height percentiles (r2 = 0.94, p < 0.001) when compared to airborne LiDAR data. In addition, the distribution of airborne LiDAR hits through the canopy profile was closely matched by model predictions across the range of sites. Importantly, this demonstrates that the structural differences between forest stands can be characterised by LITE. Models that are capable of interpreting the response of small-footprint LiDAR waveforms can facilitate algorithm development, the generation of corrections for actual LiDAR data, and the optimisation of sensor configurations for differing forest types, benefiting a range of experimental and commercial LiDAR applications. As a result, we also performed a scenario analysis to demonstrate how differences in forest structure, terrain, and sensor configuration can influence the interception of LiDAR beams.  相似文献   

2.
Remote sensing can be considered a key instrument for studies related to forests and their dynamics. At present, the increasing availability of multisensor acquisitions over the same areas, offers the possibility to combine data from different sensors (e.g., optical, RADAR, LiDAR). This paper presents an analysis on the fusion of airborne LiDAR and satellite multispectral data (IRS 1C LISS III), for the prediction of forest stem volume at plot level in a complex mountain area (Province of Trento, Southern Italian Alps), characterized by different tree species, complex morphology (i.e. altitude ranges from 65 m to 3700 m above sea level), and a range of different climates (from the sub-Mediterranean to Alpine type). 799 sample plots were randomly distributed over the 3000 km2 of the forested areas of the Trento Province. From each plot, a set of variables were extracted from both LiDAR and multispectral data. A regression analysis was carried out considering two data sources (LiDAR and multispectral) and their combination, and dividing the plot areas into groups according to their species composition, altitude and slope. Experimental results show that the combination of LiDAR and IRS 1C LISS III data, for the estimation of stem volume, is effective in all the experiments considered. The best developed models comprise variables extracted from both of these data sources. The RMSE% on an independent validation set for the stem volume estimation models ranges between 17.2% and 26.5%, considering macro sets of tree species (deciduous, evergreen and mixed), between 17.5% and 29.0%, considering dominant species plots, and between 15.5% and 21.3% considering altitude and slope sets.  相似文献   

3.
Characterizing forest structure is an important part of any comprehensive biodiversity assessment. However, current methods for measuring structural complexity require a laborious process that involves many logistically expensive point based measurements. An automated or semi-automated method would be ideal. In this study, the utility of airborne laser scanning (LiDAR; Light Detection and Ranging) for characterizing the ecological structure of a forest landscape is examined. The innovation of this paper is to use different laser pulse return properties from a full waveform LiDAR to characterize forest ecological structure. First the LiDAR dataset is stratified into four vertical layers: ground, low vegetation (0-1 m from the ground), medium vegetation (1-5 m from the ground) and high vegetation (> 5 m). Subsequently the “Type” of LiDAR return is analysed: Type 1 (singular returns); Type 2 (first of many returns); Type 3 (intermediate returns); and Type 4 (last of many returns). A forest characterization scheme derived from LiDAR point clouds is proposed. A validation of the scheme is then presented using a network of field sites that recorded commonly used metrics of biodiversity. The proposed forest characterization categories allow for quantification of gaps (above bare ground, low vegetation and medium vegetation), canopy cover and its vertical density as well as the presence of various canopy strata (low, medium and high). Regression analysis showed that LiDAR derived variables were good predictors of field recorded variables (R2 = 0.82, P < 0.05 between LiDAR derived presence of low vegetation and field derived LAI for low vegetation). The proposed scheme clearly shows the potential of full waveform LiDAR to provide information on the complexity of habitat structure.  相似文献   

4.
Scanning Light Detecting and Ranging (LiDAR), Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) were analyzed to determine (1) which of the three sensor systems most accurately predicted forest biomass, and (2) if LiDAR and SAR/InSAR data sets, jointly considered, produced more accurate, precise results relative to those same data sets considered separately. LiDAR ranging measurements, VHF-SAR cross-sectional returns, and X- and P-band cross-sectional returns and interferometric ranges were regressed with ground-estimated (from dbh) forest biomass in ponderosa pine forests in the southwestern United States. All models were cross-validated. Results indicated that the average canopy height measured by the scanning LiDAR produced the best predictive equation. The simple linear LiDAR equation explained 83% of the biomass variability (n = 52 plots) with a cross-validated root mean square error of 26.0 t/ha. Additional LiDAR metrics were not significant to the model. The GeoSAR P-band (λ = 86 cm) cross-sectional return and the GeoSAR/InSAR canopy height (X-P) captured 30% of the forest biomass variation with an average predictive error of 52.5 t/ha. A second RaDAR-FOPEN collected VHF (λ ∼ 7.8 m) and cross-polarized P-band (λ = 88 cm) cross-sectional returns, none of which proved useful for forest biomass estimation (cross-validated R2 = 0.09, RMSE = 63.7 t/ha). Joint consideration of LiDAR and RaDAR measurements produced a statistically significant, albeit small improvement in biomass estimation precision. The cross-validated R2 increased from 83% to 84% and the prediction error decreased from 26.0 t/ha to 24.9 t/ha when the GeoSAR X-P interferometric height is considered along with the average LiDAR canopy height. Inclusion of a third LiDAR metric, the 60th decile height, further increased the R2 to 85% and decreased the RMSE to 24.1 t/ha. On this 11 km2 ponderosa pine study area, LiDAR data proved most useful for predicting forest biomass. RaDAR ranging measurements did not improve the LiDAR estimates.  相似文献   

5.
The retrieval of tree and forest structural attributes from Light Detection and Ranging (LiDAR) data has focused largely on utilising canopy height models, but these have proved only partially useful for mapping and attributing stems in complex, multi-layered forests. As a complementary approach, this paper presents a new index, termed the Height-Scaled Crown Openness Index (HSCOI), which provides a quantitative measure of the relative penetration of LiDAR pulses into the canopy. The HSCOI was developed from small footprint discrete return LiDAR data acquired over mixed species woodlands and open forests near Injune, Queensland, Australia, and allowed individual trees to be located (including those in the sub-canopy) and attributed with height using relationships (r2 = 0.81, RMSE = 1.85 m, n = 115; 4 outliers removed) established with field data. A threshold contour of the HSCOI surface that encompassed ∼ 90% of LiDAR vegetation returns also facilitated mapping of forest areas, delineation of tree crowns and clusters, and estimation of canopy cover. At a stand level, tree density compared well with field measurements (r2 = 0.82, RMSE = 133 stems ha− 1, n = 30), with the most consistent results observed for stem densities ≤ 700 stems ha− 1. By combining information extracted from both the HSCOI and the canopy height model, predominant stem height (r2 = 0.91, RMSE = 0.77 m, n = 30), crown cover (r2 = 0.78, RMSE = 9.25%, n = 30), and Foliage & Branch Projective Cover (FBPC; r2 = 0.89, RMSE = 5.49%, n = 30) were estimated to levels sufficient for inventory of woodland and open forest structural types. When the approach was applied to forests in north east Victoria, stem density and crown cover were reliably estimated for forests with a structure similar to those observed in Queensland, but less so for forests of greater height and canopy closure.  相似文献   

6.
Investigating RaDAR-LiDAR synergy in a North Carolina pine forest   总被引:1,自引:0,他引:1  
A low frequency (80-120 MHz) VHF RaDAR, BioSAR, specifically designed for forest biomass estimation and a profiling LiDAR, PALS, were flown over loblolly pine plantations in the southeastern United States. LiDAR-only, RaDAR-only, and joint LiDAR-RaDAR linear models were developed to determine if returns from two sensors could be used to estimate pine biomass more accurately and precisely than returns from either sensor alone. The best five-variable RaDAR model explained 81.8% (R2) of the stem green biomass variability, with a regression RMSE of 57.5 t/ha. The best one-variable LiDAR model explained 93.3% of the biomass variation (RMSE = 33.9 t/ha). Combining the RaDAR normalized volumetric returns with the profiling LiDAR ranging measurements did little to improve the best LiDAR-only model. The best LiDAR-RaDAR model explained 93.8% of the biomass variation (RSME = 32.7 t/ha). Cross-validation and training/test validation procedures demonstrated (1) that all models are unbiased and (2) the increased precision of the LiDAR-only and LiDAR-RaDAR models. The results of this investigation and a companion study indicate that there is little to be gained combining VHF-RaDAR volumetric returns and profiling LiDAR ranging measurements in pine forests; a LiDAR ranging system is sufficient for accurate, precise biomass estimation.  相似文献   

7.
Conservation of biodiversity requires information at many spatial scales in order to detect and preserve habitat for many species, often simultaneously. Vegetation structure information is particularly important for avian habitat models and has largely been unavailable for large areas at the desired resolution. Airborne LiDAR, with its combination of relatively broad coverage and fine resolution provides existing new opportunities to map vegetation structure and hence avian habitat. Our goal was to model the richness of forest songbirds using forest structure information obtained from LiDAR data. In deciduous forests of southern Wisconsin, USA, we used discrete-return airborne LiDAR to derive forest structure metrics related to the height and density of vegetation returns, as well as composite variables that captured major forest structural elements. We conducted point counts to determine total forest songbird richness and the richness of foraging, nesting, and forest edge-related habitat guilds. A suite of 35 LiDAR variables were used to model bird species richness using best-subsets regression and we used hierarchical partitioning analysis to quantify the explanatory power of each variable in the multivariate models. Songbird species richness was correlated most strongly with LiDAR variables related to canopy and midstory height and midstory density (R2 = 0.204, p < 0.001). Richness of species that nest in the midstory was best explained by canopy height variables (R2 = 0.197, p < 0.001). Species that forage on the ground responded to mean canopy height and the height of the lower canopy (R2 = 0.149, p < 0.005) while aerial foragers had higher richness where the canopy was tall and dense and the midstory more sparse (R2 = 0.216, p < 0.001). Richness of edge-preferring species was greater where there were fewer vegetation returns but higher density in the understory (R2 = 0.153, p < 0.005). Forest interior specialists responded positively to a tall canopy, developed midstory, and a higher proportion of vegetation returns (R2 = 0.195, p < 0.001). LiDAR forest structure metrics explained between 15 and 20% of the variability in richness within deciduous forest songbird communities. This variability was associated with vertical structure alone and shows how LiDAR can provide a source of complementary predictive data that can be incorporated in models of wildlife habitat associations across broad geographical extents.  相似文献   

8.
This paper presents a robust parallel Delaunay triangulation algorithm called ParaStream for processing billions of points from nonoverlapped block LiDAR files. The algorithm targets ubiquitous multicore architectures. ParaStream integrates streaming computation with a traditional divide-and-conquer scheme, in which additional erase steps are implemented to reduce the runtime memory footprint. Furthermore, a kd-tree-based dynamic schedule strategy is also proposed to distribute triangulation and merging work onto the processor cores for improved load balance. ParaStream exploits most of the computing power of multicore platforms through parallel computing, demonstrating qualities of high data throughput as well as a low memory footprint. Experiments on a 2-Way-Quad-Core Intel Xeon platform show that ParaStream can triangulate approximately one billion LiDAR points (16.4 GB) in about 16 min with only 600 MB physical memory. The total speedup (including I/O time) is about 6.62 with 8 concurrent threads.  相似文献   

9.
To effectively manage forested ecosystems an accurate characterization of species distribution is required. In this study we assess the utility of hyperspectral Airborne Imaging Spectrometer for Applications (AISA) imagery and small footprint discrete return Light Detection and Ranging (LiDAR) data for mapping 11 tree species in and around the Gulf Islands National Park Reserve, in coastal South-western Canada. Using hyperspectral imagery yielded producer's and user's accuracies for most species ranging from > 52-95.4 and > 63-87.8%, respectively. For species dominated by definable growth stages, pixel-level fusion of hyperspectral imagery with LiDAR-derived height and volumetric canopy profile data increased both producer's (+ 5.1-11.6%) and user's (+ 8.4-18.8%) accuracies. McNemar's tests confirmed that improvements in overall accuracies associated with the inclusion of LiDAR-derived structural information were statistically significant (p < 0.05). This methodology establishes a specific framework for mapping key species with greater detail and accuracy then is possible using conventional approaches (i.e., aerial photograph interpretation), or either technology on its own. Furthermore, in the study area, acquisition and processing costs were lower than a conventional aerial photograph interpretation campaign, making hyperspectral/LiDAR fusion a viable replacement technology.  相似文献   

10.
The lack of maps depicting forest three-dimensional structure, particularly as pertaining to snags and understory shrub species distribution, is a major limitation for managing wildlife habitat in forests. Developing new techniques to remotely map snags and understory shrubs is therefore an important need. To address this, we first evaluated the use of LiDAR data for mapping the presence/absence of understory shrub species and different snag diameter classes important for birds (i.e. ≥ 15 cm, ≥ 25 cm and ≥ 30 cm) in a 30,000 ha mixed-conifer forest in Northern Idaho (USA). We used forest inventory plots, LiDAR-derived metrics, and the Random Forest algorithm to achieve classification accuracies of 83% for the understory shrubs and 86% to 88% for the different snag diameter classes. Second, we evaluated the use of LiDAR data for mapping wildlife habitat suitability using four avian species (one flycatcher and three woodpeckers) as case studies. For this, we integrated LiDAR-derived products of forest structure with available models of habitat suitability to derive a variety of species-habitat associations (and therefore habitat suitability patterns) across the study area. We found that the value of LiDAR resided in the ability to quantify 1) ecological variables that are known to influence the distribution of understory vegetation and snags, such as canopy cover, topography, and forest succession, and 2) direct structural metrics that indicate or suggest the presence of shrubs and snags, such as the percent of vegetation returns in the lower strata of the canopy (for the shrubs) and the vertical heterogeneity of the forest canopy (for the snags). When applied to wildlife habitat assessment, these new LiDAR-based maps refined habitat predictions in ways not previously attainable using other remote sensing technologies. This study highlights new value of LiDAR in characterizing key forest structure components important for wildlife, and warrants further applications to other forested environments and wildlife species.  相似文献   

11.
Quantifying aboveground biomass in forest ecosystems is required for carbon stock estimation, aspects of forest management, and further developing a capacity for monitoring carbon stocks over time. Airborne Light Detection And Ranging (LiDAR) systems, of all remote sensing technologies, have been demonstrated to yield the most accurate estimates of aboveground biomass for forested areas over a wide range of biomass values. However, these systems are limited by considerations including large data volumes and high costs. Within the constraints imposed by the nature of the satellite mission, the GeoScience Laser Altimeter System (GLAS) aboard ICESat has provided data conferring information regarding forest vertical structure for large areas at a low end user cost. GLAS data have been demonstrated to accurately estimate forest height and aboveground biomass especially well in topographically smooth areas with homogeneous forested conditions. However in areas with dense forests, high relief, or heterogeneous vegetation cover, GLAS waveforms are more complex and difficult to consistently characterize. We use airborne discrete return LiDAR data to simulate GLAS waveforms and to subsequently deconstruct coregistered GLAS waveforms into vegetation and ground returns. A series of waveform metrics was calculated and compared to topography and vegetation information gleaned from the airborne data. A model to estimate maximum relief directly from waveform metrics was developed with an R2 of 0.76 (n = 110), and used for the classification of the maximum relief of the areas sensed by GLAS. Discriminant analysis was also conducted as an alternative classification technique. A model was also developed estimating forest canopy height from waveform metrics for all of the data (R2 = 0.81, n = 110) and for the three separate relief classes; maximum relief 0-7 m (R2 = 0.83, n = 44), maximum relief 7-15 m (R2 = 0.88, n = 41) and maximum relief > 15 m (R2 = 0.75, n = 25). The moderate relief class model yielded better predictions of forest height than the low relief class model which is attributed to the increasing variability of waveform metrics with terrain relief. The moderate relief class model also yielded better predictions than the high relief class model because of the mixing of vegetation and terrain signals in waveforms from high relief footprints. This research demonstrates that terrain can be accurately modeled directly from GLAS waveforms enabling the inclusion of terrain relief, on a waveform specific basis, as supplemental model input to improve estimates of canopy height.  相似文献   

12.
Regression has been widely applied in Light Detection And Ranging (LiDAR) remote sensing to spatially extend predictions of total aboveground biomass (TAGB) and other biophysical properties over large forested areas. Sample (field) plot size has long been considered a key sampling design parameter and focal point for optimization in forest surveys, because of its impact on sampling effort and the estimation accuracy of forest inventory attributes. In this study, we demonstrate how plot size and co-registration error interact to influence the estimation of LiDAR canopy height and density metrics, regression model coefficients, and the prediction accuracy of least-squares estimators of TAGB. We made use of simulated forest canopies and synthetic LiDAR point clouds, so that we could maintain strict control over the spatial scale and complexity of forest scenes, as well as the magnitude and type of planimetric error inherent in ground-reference and LiDAR datasets. Our results showed that predictions of TAGB improved markedly as plot size increased from 314 (10 m radius) to 1964 m2 (25 m radius). The co-registration error (spatial overlap) between ground-reference and LiDAR samples negatively impacted the estimation of LiDAR metrics, regression model fit, and the prediction accuracy of TAGB. We found that larger plots maintained a higher degree of spatial overlap between ground-reference and LiDAR datasets for any given GPS error, and were therefore more resilient to the ill effects of co-registration error compared to small plots. The impact of co-registration error was more pronounced in tall, spatially heterogeneous stands than short, homogeneous stands. We identify and briefly discuss three possible ways that LiDAR data could be used to optimize plot size, sample selection, and the deployment of GPS resources in forest biomass surveys.  相似文献   

13.
Large areas of the world's coastal marine environments remain poorly characterized because they have not been mapped with sufficient accuracy and at spatial resolutions high enough to support a wide range of societal needs. Expediting the rate of seafloor mapping requires the collection of multi-use datasets that concurrently address hydrographic charting needs and support decision-making in ecosystem-based management. While active optical and acoustic sensors have previously been compared for the purpose of hydrographic charting, few studies have evaluated the performance and cost effectiveness of these systems for providing benthic habitat maps. Bathymetric and intensity data were collected in shallow water (< 50 m depth) coral reef ecosystems using two conventional remote sensing technologies: (1) airborne Light Detection and Ranging (LiDAR), and (2) ship-based multibeam (MBES) Sound Navigation and Ranging (SoNAR). A comparative assessment using a suite of twelve metrics demonstrated that LiDAR and MBES were equally capable of discriminating seafloor topography (r = > 0.9), although LiDAR depths were found to be consistently shallower than MBES depths. The intensity datasets were not significantly correlated at a broad 4 × 5 km spatial scale (r = − 0.11), but were moderately correlated in flat areas at a fine 4 × 500 m spatial scale (r = 0.51), indicating that the LiDAR intensity algorithm needs to be improved before LiDAR intensity surfaces can be used for habitat mapping. LiDAR cost 6.6% less than MBES and required 40 fewer hours to map the same study area. MBES provided more detail about the seafloor by fully ensonifying high-relief features, by differentiating between fine and coarse sediments and by collecting data with higher spatial resolutions. Surface fractal dimensions and fast Fourier transformations emerged as useful methods for detecting artifacts in the datasets. Overall, LiDAR provided a more cost effective alternative to MBES for mapping and monitoring shallow water coral reef ecosystems (< 50 m depth), although the unique advantages of MBES may make it a more appropriate choice for answering certain ecological or geological questions requiring very high resolution data.  相似文献   

14.
Changes in the structural state of forests of the semi-arid U.S.A., such as an increase in tree density, are widely believed to be leading to an ecological crisis, but accurate methods of quantifying forest density and configuration are lacking at landscape scales. An individual tree canopy (ITC) method based on aerial LiDAR has been developed to assess forest structure by estimating the density and spatial configuration of trees in four different height classes. The method has been tested against field measured forest inventory data from two geographically distinct forests with independent LiDAR acquisitions. The results show two distinct patterns: accurate, unbiased density estimates for trees taller than 20 m, and underestimation of density in trees less than 20 m tall. The underestimation of smaller trees is suggested to be a limitation of LiDAR remote sensing. Ecological applications of the method are demonstrated through landscape metrics analysis of density and configuration rasters.  相似文献   

15.
Canopy height distributions were created from small-footprint airborne laser scanner (ALS) data collected over 40 field sample plots with size 1000 m2 located in mature conifer forest. ALS data were collected with two different instruments, i.e., the ALTM 1233 and ALTM 3100 laser scanners (Optech Inc.). The ALTM 1233 data were acquired at a flying altitude of 1200 m and a pulse repetition frequency (PRF) of 33 kHz. Three different acquisitions were carried out with ALTM 3100, i.e., (1) a flying altitude of 1100 m and a PRF of 50 kHz, (2) a flying altitude of 1100 m and a PRF of 100 kHz, and (3) a flying altitude of 2000 m and a PRF of 50 kHz. Height percentiles, mean and maximum height values, coefficients of variation of the heights, and canopy density at different height intervals above the ground were derived from the four different ALS datasets and for single + first and last echoes of the ALS data separately. The ALS-derived height- and density variables were assessed in pair-wise comparisons to evaluate the effects of (a) instrument, (b) flying altitude, and (c) PRF. A systematic shift in height values of up to 0.3 m between sensors when the first echoes were compared was demonstrated. Also the density-related variables differed significantly between the two instruments. Comparisons of flying altitudes and PRFs revealed upwards shifted canopy height distributions for the highest flying altitude (2000 m) and the lowest PRF (50 kHz). The distribution of echoes on different echo categories, i.e., single and multiple (first and last) echoes, differed significantly between acquisitions. The proportion of multiple echoes decreased with increasing flying altitude and PRF. Different echo categories have different properties since it is likely that single echoes tend to occur in the densest parts of the tree crowns, i.e., near the apex where the concentration of biological matter is highest and distance to the ground is largest. To assess the influence of instrument, flying altitude, and PRF on biophysical properties derived from ALS data, regression analysis was carried out to relate ALS-derived metrics to mean tree height (hL) and timber volume (V). Cross validation revealed only minor differences in precision for the different ALS acquisitions, but systematic differences between acquisitions of up to 2.5% for hL and 10.7% for V were found when comparing data from different acquisitions.  相似文献   

16.
The structure of a forest canopy often reflects its disturbance history. Such signatures of past disturbances or legacies can influence how the ecosystem functions across broad spatio-temporal scales. The 1938 hurricane and ensuing salvage operations which swept through New England represent the most recent large, infrequent disturbance (LID) in this region. Though devastating (downing ∼ 70% of the timber at Harvard Forest), the disturbance was not indiscriminate; it left behind a heterogeneous landscape comprised of different levels of canopy damage. We analyzed large-footprint LiDAR, from the Prospect Hill tract at Harvard Forest in central Massachusetts, to assess whether damage to the forest structure from the hurricane and subsequent timber extraction could be discerned after ∼ 65 years. Differences in LiDAR-derived measures of canopy height and vertical diversity were a function of the degree of damage from the 1938 hurricane and the predominant tree species which is, in part, a function of land use history. Higher levels of damage corresponded to slightly shorter canopies with a less even vertical distribution of return from the ground to the top. In addition, differences in canopy topography as revealed by spatial autocorrelation of canopy top heights were found among the damage classes. Less disturbed stands were characterized by lower levels of local autocorrelation for canopy height and higher levels of vertical diversity of LiDAR returns. These differences in canopy structure reveal that the forest tract has not completely recovered from the 1938 LID and salvage regime, which may have implications on arboreal and understory habitat and other ecosystem functions.  相似文献   

17.
Three mature stands at the forest test site Järvselja, Estonia were extensively measured for using as a validation dataset for heterogeneous canopy reflectance models. In order to enable the reconstruction of the 3-D architecture of these 100 × 100 m2 test plots, individual tree positions and crown dimensions were inventoried. In addition, leaf, needle, stem bark and branch bark visible and near-infrared (VNIR) reflectance spectra, and VNIR reflectance spectra of ground vegetation were measured. This in situ dataset is supported by atmospherically and radiometrically corrected Mode 3 CHRIS reflectance spectra for three view directions, and top of canopy VNIR nadir spectra from airborne measurements. Details of measurements, instruments in use, data processing, and access to data are described in a technical report which is available on-line.  相似文献   

18.
Riparian zones in Australia are exposed to increasing pressures because of disturbance from agricultural and urban expansion, weed invasion, and overgrazing. Accurate and cost-effective mapping of riparian environments is important for assessing riparian zone functions associated with water quality, biodiversity, and wildlife habitats. The objective of this research was to compare the accuracy and costs of mapping riparian zone attributes from image data acquired by three different sensor types, i.e. Light Detection and Ranging (LiDAR) (0.5-2.4 m pixels), and multi-spectral QuickBird (2.4 m pixels) and SPOT-5 (10 m pixels). These attributes included streambed width, riparian zone width, plant projective cover, longitudinal continuity, vegetation overhang, and bank stability. The riparian zone attributes were mapped for a study area along Mimosa Creek in the Fitzroy Catchment, Central Queensland, Australia. Object-based image and regression analyses were used for mapping the riparian zone attributes. The validation of the LiDAR, QuickBird, and SPOT-5 derived maps of streambed width (R = 0.99, 0.71, and 0.44 respectively) and riparian zone width (R = 0.91, 0.87, and 0.74 respectively) against field derived measurements produced the highest accuracies for the LiDAR data and the lowest using the SPOT-5 image data. Cross-validation estimates of misclassification produced a root mean square error of 1.06, 1.35 and 1.51 from an ordinal scale from 0 to 4 of the bank stability score for the LiDAR, QuickBird and SPOT-5 image data, respectively. The validation and empirical modelling showed high correlations for all datasets for mapping plant projective cover (R > 0.93). The SPOT-5 image data were unsuitable for assessment of riparian zone attributes at the spatial scale of Mimosa Creek and associated riparian zones. Cost estimates of image and field data acquisition and processing of the LiDAR, QuickBird, and SPOT-5 image data showed that discrete return LiDAR can be used for costs lower than those for QuickBird image data over large spatial extents (e.g. 26,000 km of streams). With the higher level of vegetation structural and landform information, mapping accuracies, geometric precision, and lower overall costs at large spatial extents, LiDAR data are a feasible means for assessment of riparian zone attributes.  相似文献   

19.
Biomass fractions (total aboveground, branches and foliage) were estimated from a small footprint discrete-return LiDAR system in an unmanaged Mediterranean forest in central Spain. Several biomass estimation models based on LiDAR height, intensity or height combined with intensity data were explored. Raw intensity data were normalized to a standard range in order to remove the range dependence of the intensity signal. In general terms, intensity-based models provided more accurate predictions of the biomass fractions. Height models selected were mainly based on a percentile of the height distribution. Intensity models selected included variables that consider the percentage of the intensity accumulated at different height percentiles, which implicitly take into account the height distribution. The general models derived considering all species together were based on height combined with intensity data. These models yielded R2 values greater than 0.58 for the different biomass fractions considered and RMSE values of 28.89, 18.28 and 1.51 Mg ha1 for aboveground, branch and foliage biomass, respectively. Results greatly improved for species-specific models using the main species present in each plot, with R2 values greater than 0.85, 0.70 and 0.90 for black pine, Spanish juniper and Holm oak, respectively, and with lower RMSE for the biomass fractions. Reductions in LiDAR point density had only a small effect on the results obtained, except for those models based on a variation of the Canopy Reflection Sum, which was weighted by the mean point density. Based on the species-specific equations derived, Holm oak dominated plots showed the highest average carbon contained by aboveground biomass and branch biomass 44.66 and 31.42 Mg ha− 1 respectively, while for foliage biomass carbon, Spanish juniper showed the highest average value (3.04 Mg ha− 1).  相似文献   

20.
In this study, a combination of low and high density airborne LiDAR and satellite SPOT-5 HRG data were used in conjunction with ground measurements of forest structure to parameterize four models for zero-plane displacement height d(m) and aerodynamic roughness length z0m(m), over cool-temperate forests in Heihe River basin, an arid region of Northwest China. For the whole study area, forest structural parameters including tree height (Ht) (m), first branch height (FBH) (m), crown width (CW) (m) and stand density (SD)(trees ha− 1) were derived by stepwise multiple linear regressions of ground-based forest measurements and height quantiles and fractional canopy cover (fc) derived from the low density LiDAR data. The high density LiDAR data, which covered a much smaller area than the low density LiDAR data, were used to relate SPOT-5's reflectance to the effective plant area index (PAIe) of the forest. This was done by linear spectrum decomposition and Li-Strahler geometric-optical models. The result of the SPOT-5 spectrum decomposition was applied to the whole area to calculate PAIe (and leaf area index LAI). Then, four roughness models were applied to the study area with these vegetation data derived from the LiDAR and SPOT-5 as input. For validation, measurements at an eddy covariance site in the study area were used. Finally, the four models were compared by plotting histograms of the accumulative distribution of modeled d and z0m in the study area. The results showed that the model using by frontal area index (FAI) produced best d estimate, and the model using both LAI and FAI generated the best z0m. Furthermore, all models performed much better when the representative tree height was Lorey's mean height instead of using an arithmetic mean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号