首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High spatial resolution remotely sensed data has the potential to complement existing forest health programs for both strategic planning over large areas, as well as for detailed and precise identification of tree crowns subject to stress and infestation. The area impacted by the current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak in British Columbia, Canada, has increased 40-fold over the previous 5 years, with approximately 8.5 million ha of forest infested in 2005. As a result of the spatial extent and intensity of the outbreak, new technologies are being assessed to help detect, map, and monitor the damage caused by the beetle, and to inform mitigation of future beetle outbreaks. In this paper, we evaluate the capacity of high spatial resolution QuickBird multi-spectral imagery to detect mountain pine beetle red attack damage. ANOVA testing of individual spectral bands, as well as the Normalized Difference Vegetation Index (NDVI) and a ratio of red to green reflectance (Red-Green Index or RGI), indicated that the RGI was the most successful (p < 0.001) at separating non-attack crowns from red attack crowns. Based on this result, the RGI was subsequently used to develop a binary classification of red attack and non-attack pixels. The total number of QuickBird pixels classified as having red attack damage within a 50 m buffer of a known forest health survey point were compared to the number of red attack trees recorded at the time of the forest health survey. The relationship between the number of red attack pixels and observed red attack crowns was assessed using independent validation data and was found to be significant (r2 = 0.48, p < 0.001, standard error = 2.8 crowns). A comparison of the number of QuickBird pixels classified as red attack, and a broader scale index of mountain pine beetle red attack damage (Enhanced Wetness Difference Index, calculated from a time series of Landsat imagery), was significant (r2 = 0.61, p < 0.001, standard error = 1.3 crowns). These results suggest that high spatial resolution imagery, in particular QuickBird satellite imagery, has a valuable role to play in identifying tree crowns with red attack damage. This information could subsequently be used to augment existing detailed forest health surveys, calibrate synoptic estimates of red attack damage generated from overview surveys and/or coarse scale remotely sensed data, and facilitate the generation of value-added information products, such as estimates of timber volume impacts at the forest stand level.  相似文献   

2.
The current outbreak of mountain pine beetle (Dendroctonus ponderosae Hopkins) in British Columbia (BC), Canada, has led forest managers to consider thinning as a means of decreasing residual tree susceptibility to attack and subsequent mortality. Previous research indicates that susceptibility to mountain pine beetle is a function of a tree's physiological vigor and the intensity of attack. Trees able to produce ≥ 80 g (g) of wood per m2 of projected leaf area annually are highly resistant, because they are able to shift resource allocation locally from wood to resin production to isolate blue-stain fungi introduced by attacking beetles. Typically, the leaf area of susceptible stands must be reduced by two-thirds to permit most residual trees to increase their vigor to a safe level. We evaluate whether Landsat Thematic Mapper (TM) imagery (30 × 30 m) provides a means to assess the maximum leaf area index (LAI) of unthinned stands and the extent that thinning reduces LAI. The extent that residual trees in thinned stands may have increased their resistance to attack from mountain pine beetle is predicted from a non-linear relationship between % maximum LAI and mean tree vigor.We investigated the merits of this approach in the vicinity of Parson, British Columbia using four stands of lodgepole pine (Pinus contorta Dougl.), two of which were heavily thinned (stands were spaced to 4 and 5 m, approximately 70% reduction in stand density). An analysis of archived Landsat TM imagery indicated that prior to thinning in 1993, all four stands had full canopy, which, for mature stands, would translate to mean tree vigor between 40 and 70 g of annual wood production per m2 of foliage. By 1995, based on estimated changes in LAI derived from a second data of Landsat TM imagery, stand vigor in the unthinned stands had not changed; however, in the thinned stands, a nearly two third reduction in LAI resulted in a predicted increase in vigor to between 100 and 160 g wood m− 2 of leaf area. A subsequent assessment in 2001 indicated that stand vigor remained higher in the thinned stands relative to the control stands. Following an infestation of mountain pine beetle in the study area in 2002, mortality data indicated that the thinned stands experienced no mortality relative to the unthinned stands which experienced 5.5% mortality in the initial years of the attack. In the larger area surrounding the study site, a general relationship was found between predicted stand vigor and mountain pine beetle-induced mortality as estimated from aerial overview survey data (r2 = 0.43, p < 0.01).  相似文献   

3.
The current outbreak of mountain pine beetle (Dendroctonus ponderosae) in western Canada has been increasing over the past decade and is currently estimated to be impacting 9.2 million hectares, with varying levels of severity. Large area insect monitoring is typically undertaken using manual aerial overview sketch mapping, whereby an interpreter depicts areas of homogenous insect attack conditions onto 1:250,000 or 1:100,000 scale maps. These surveys provide valuable strategic data for management at the provincial scale. The coarse spatial and attribute resolution of these data however, make them inappropriate for fine-scale monitoring and operational planning. For instance, it is not possible to estimate the initial timing of attack and year of stand death. In this study, we utilise eight Landsat scenes collected over a 14 year period in north-central British Columbia, Canada, where the infestation has gradually developed both spatially and temporally. After pre-processing and normalising the eight scenes using a relative normalisation procedure, decision tree analysis was applied to classify spectral trajectories of the Normalised Difference Moisture Index (NDMI). From the classified temporal sequence of images, key parameters were extracted including the presence of beetle disturbance and timing of stand decline. The accuracy of discriminating beetle attack from healthy forest stands was assessed both spatially and temporally using three years of aerial survey data (1996, 2003, and 2004) with results indicating overall classification accuracies varying between 71 and 86%. As expected, the earliest and least severe attack year (1996), recorded the lowest overall accuracy. The relationship between the timing of stand attack (i.e. moderate to severe beetle infestation) and NDMI (initial year of detected disturbance) was also explored. The results suggest that there is potential for deriving regional estimates of the year of stand death using Landsat data and decision tree analysis however, a higher temporal frequency of images is required to quantify the timing of mountain pine beetle attack.  相似文献   

4.
Insect outbreaks cause significant tree mortality across western North America, including in high-elevation whitebark pine forests. These forests are under several threats, which include attack by insects and white pine blister rust, as well as conversion to other tree species as a result of fire suppression. Mapping tree mortality is critical to determining the status of whitebark pine as a species. Satellite remote sensing builds upon existing aerial surveys by using objective, repeatable methods that can result in high spatial resolution monitoring. Past studies concentrated on level terrain and only forest vegetation type. The objective of this study was to develop a means of classifying whitebark pine mortality caused by a mountain pine beetle infestation in rugged, remote terrain using high spatial resolution satellite imagery. We overcame three challenges of mapping mortality in this mountainous region: (1) separating non-vegetated cover types, green and brown herbaceous cover, green (live) tree cover, and red-attack (dead) tree cover; (2) variations in illumination as a result of variations in slope and aspect related to the mountainous terrain of the study site; and (3) the difficulty of georegistering the imagery for use in comparing field measurements. Quickbird multi-spectral imagery (2.4 m spatial resolution) was used, together with a maximum likelihood classification method, to classify vegetation cover types over a 6400 ha area. To train the classifier, we selected pixels in each cover class from the imagery guided by our knowledge of the study site. Variables used in the maximum likelihood classifier included the ratio of red reflectance to green reflectance as well as green reflectance. These variables were stratified by solar incidence angle to account for illumination variability. We evaluated the results of the classified image using a reserved set of image-derived class members and field measurements of live and dead trees. Classification results yielded high overall accuracy (86% and 91% using image-derived class members and field measurements respectively) and kappa statistics (0.82 and 0.82) and low commission (0.9% and 1.5%) and omission (6.5% and 15.9%) errors for the red-attack tree class. Across the scene, 700 ha or 31% of the forest was identified as in the red-attack stage. Severity (percent mortality by canopy cover) varied from nearly 100% for some areas to regions with little mortality. These results suggest that high spatial resolution satellite imagery can provide valuable information for mapping and monitoring tree mortality even in rugged, mountainous terrain.  相似文献   

5.
Previous studies have used remote-sensing images to map tree mortality caused by mountain pine beetle (Dendroctonus ponderosae; MPB) in relatively homogeneous lodgepole pine (Pinus contorta) forests; however, classification methods have not been tested for the patchy landscape of ponderosa pine-dominated (Pinus ponderosae) montane forests characterized by highly variable tree density. This study explores two supervised classification methods to identify MPB-caused mortality (red attack) in heterogeneous montane forests of the Colorado Front Range using 1 m-resolution 2011 imagery of the National Agriculture Imagery Program (NAIP): maximum likelihood using the red, green, and blue bands, and the red-green index (RGI), and a thresholding technique using the RGI. Two variations of the RGI threshold method were also explored: the addition of a green-band threshold and the incorporation of a focal analysis. Evaluation pixels were used to assess the accuracy of the classification methods. The maximum likelihood (97 Percentage Correctly Classified (PCC); 11% error of commission for red attack) and RGI threshold (85 PCC; 46% error of commission for red attack) classification methods overestimated the red attack. The RGI and green band threshold classification reduced the error of commission (5%) and had high overall accuracy (97 PCC). In a comparison of classification methods across tree-density sites, we found the maximum likelihood classification had a very high accuracy in the high-density site (95 PCC), but substantially lower accuracy in the low-density site (85 PCC) due to the presence of more visible cover types. The RGI threshold classification with the green band constraint produced more consistent PCCs across tree densities: high (93.7 PCC), moderate (95.2 PCC), and low (92.0 PCC). Our results indicate forest structure may affect the classification accuracy and should be considered when selecting a classification method for a landscape.  相似文献   

6.
Continuing, severe outbreaks of mountain pine beetle (Dendroctonus ponderosae) across western North America have resulted in widespread mortality of lodgepole pine (Pinus contorta). Multiple studies have used high spatial resolution satellite data to map areas of beetle kill; these studies have largely focused on mapping red canopy cover associated with recent tree mortality and have not examined mapping gray canopy cover that occurs after red needles have dropped. The work presented here examines the use of newly available GeoEye-1 data for mapping both red and gray canopy area in southeastern Wyoming lodgepole pine forest. A 0.5 m spatial resolution, pan-sharpened GeoEye-1 image was used to classify areas of green, red, and gray canopy cover. Reference data were collected at twelve 500 m2 field plots. Shadow-normalized green, red, and gray canopy area from classified GeoEye-1 data closely agreed with field-estimated green, red, and gray canopy area. Mean absolute error in canopy cover for the twelve sample plots was 8.3% for the green class, 5.4% for the red class, and 7.2% for the gray class. When all twelve plots were aggregated, remotely sensed estimates of green, red, and gray cover were within 1.7% of the field-estimated cover. Our results demonstrate that high spatial resolution spaceborne multispectral data are a promising tool for mapping canopy mortality caused by mountain pine beetle outbreaks.  相似文献   

7.
Red-attack damage caused by mountain pine beetle (Dentroctonus ponderosa Hopkins) infestation in stands of lodgepole pine (Pinus contorta) in the Prince George Forest Region of British Columbia was examined using multitemporal Landsat-7 ETM+ imagery acquired in 1999, 2000, and 2001. The image data were geometrically and atmospherically corrected, and processed using the Tasseled Cap Transformation (TCT) to obtain wetness indices. The final steps included pixel subtraction, enhancement, and thresholding of the wetness index differences. The resulting enhanced wetness difference index (EWDI) was used to interpret spectral patterns in stands with confirmed (through aerial survey) red-attack damage in 2001, and these EWDI patterns were compared to the patterns of reflectance in normal-colour composites. We stratified the aerial survey dataset into two levels and used the EWDI to discriminate classes of 10-29 red-attack trees and 30-50 red-attack trees, and a sample of healthy forest collected from inventory data. Classification accuracy of red-attack damage based on the EWDI ranged from 67% to 78% correct.  相似文献   

8.
Mountain pine beetle (Dendroctonus ponderosae Hopkins) is the most destructive insect infesting mature pine forests in North America and has devastated millions of hectares of forest in western Canada. Past studies have demonstrated the use of multispectral imagery for remote identification and mapping of visible or red attack damage in forests. This study aims to detect pre-visual or green attack damage in lodgepole pine needles by means of hyperspectral measurements, particularly via continuous wavelet analysis. Field measurements of lodgepole pine stands were conducted at two sites located northwest of Edmonton, Alberta, Canada. In June and August of 2007, reflectance spectra (350-2500 nm) were collected for 16 pairs of trees. Each of the 16 tree pairs included one control tree (healthy), and one stressed tree (girdled to simulate the effects of beetle infestation). In addition, during the period of June through October 2008, spectra were collected from 15 pairs of control- and beetle-infested trees. Spectra derived from these 31 tree pairs were subjected to a continuous wavelet transform, generating a scalogram that compiles the wavelet power as a function of wavelength location and scale of decomposition. Linear relationships were then explored between the wavelet scalograms and chemical properties or class labels (control and non-control) of the sample populations in order to isolate the most useful distinguishing spectral features that related to infested or girdled trees vs. control trees.A deficit in water content is observed in infested trees while an additional deficit in chlorophyll content is seen for girdled trees. The measurable water deficit of infested and girdled tree samples was detectable from the wavelet analysis of the reflectance spectra providing a novel method for the detection of green attack. The spectral features distinguishing control and infested trees are predominantly located between 950 and 1390 nm from scales 1 to 8. Of those, five features between 1318 to 1322 nm at scale 7 are consistently found in the July and August 2008 datasets. These features are located at longer wavelengths than those investigated in previous studies (below 1100 nm) and provide new insights into the potential remote detection of green attack. Spectral features that distinguish control and girdled trees were mostly observed between 1550 and 2370 nm from scales 1 to 5. The differing response of girdled and infested trees appears to indicate that the girdling process does not provide a perfect simulation of the effects caused by beetle infestation.It remains to be determined if the location of the 1318-1322 nm features, near the edge of a strong atmospheric water absorption band, will be sufficiently separable for use in airborne detection of green attack. A plot comparing needle water content and wavelet power at 1320 nm reveals considerable overlap between data derived from both infested and control samples, though the groups are statistically separable. This obstacle may preclude a high accuracy separation of healthy and infected single individuals, but establishing threshold identification levels may provide an economical, efficient and expeditious method for discriminating between healthy and infested tree populations.  相似文献   

9.
A conceptual model for the spectral-temporal development of a forest stand was developed and tested. The model hypothesizes that reflectance changes for a regenerating forest stand follow a defined path in spectral brightnessgreenness space. Landsat Thematic Mapper imagery and field data collected from the lodgepole pine forest of Yellowstone National Park, USA provided an empirical means by which the theoretical model was tested. Recently disturbed stands are spectrally bright and low in greenness. As a stand progresses to midsuccessional stages, brightness decreases, but greenness of the stand is highly variable. Sites affected by the mountain pine beetle regress back along the brightness-greenness vector as the overstory is progressively thinned by the beetle infestation.  相似文献   

10.
Insects are important forest disturbance agents, and mapping their effects on tree mortality and surface fuels represents a critical research challenge. Although various remote sensing approaches have been developed to monitor insect impacts, most studies have focused on single insect agents or single locations and have not related observed changes to ground-based measurements. This study presents a remote sensing framework to (1) characterize spectral trajectories associated with insect activity of varying duration and severity and (2) relate those trajectories to ground-based measurements of tree mortality and surface fuels in the Cascade Range, Oregon, USA. We leverage a Landsat time series change detection algorithm (LandTrendr), annual forest health aerial detection surveys (ADS), and field measurements to investigate two study landscapes broadly applicable to conifer forests and dominant insect agents of western North America. We distributed 38 plots across multiple forest types (ranging from mesic mixed-conifer to xeric lodgepole pine) and insect agents (defoliator [western spruce budworm] and bark beetle [mountain pine beetle]). Insect effects were evident in the Landsat time series as combinations of both short- and long-duration changes in the Normalized Burn Ratio spectral index. Western spruce budworm trajectories appeared to show a consistent temporal evolution of long-duration spectral decline (loss of vegetation) followed by recovery, whereas mountain pine beetle plots exhibited both short- and long-duration spectral declines and variable recovery rates. Although temporally variable, insect-affected stands generally conformed to four spectral trajectories: short-duration decline then recovery, short- then long-duration decline, long-duration decline, long-duration decline then recovery. When comparing remote sensing data with field measurements of insect impacts, we found that spectral changes were related to cover-based estimates (tree basal area mortality [R2adj = 0.40, F1,34 = 24.76, P < 0.0001] and down coarse woody detritus [R2adj = 0.29, F1,32 = 14.72, P = 0.0006]). In contrast, ADS changes were related to count-based estimates (e.g., ADS mortality from mountain pine beetle positively correlated with ground-based counts [R2adj = 0.37, F1,22 = 14.71, P = 0.0009]). Fine woody detritus and forest floor depth were not well correlated with Landsat- or aerial survey-based change metrics. By characterizing several distinct temporal manifestations of insect activity in conifer forests, this study demonstrates the utility of insect mapping methods that capture a wide range of spectral trajectories. This study also confirms the key role that satellite imagery can play in understanding the interactions among insects, fuels, and wildfire.  相似文献   

11.
A method has been recently presented to predict the net primary production (NPP) of Mediterranean forests by integrating conventional and remote-sensing data. This method was based on the use of two models, C-Fix and BIOME-BGC, whose outputs are combined with estimates of stem volume and tree age to predict the NPP of the examined ecosystems. This article investigates the possibility of deriving these two forest attributes from airborne high-resolution lidar data. The research was carried out in the San Rossore pine forest, a test site in Central Italy where several investigations have been conducted. First, estimates of stand stem volume and tree age were obtained from lidar data by application of a simplified method based on existing literature and a few ground measurements. The accuracy of these stand attributes was assessed by comparison with the independent ground data derived from a recent forest inventory. Next, the stem volume and tree age estimates were used to drive the NPP modelling strategy, whose outputs were evaluated against the inventory measurements of current annual increment (CAI). The simplified lidar data processing method produces stand stem volume and tree age estimates having moderate accuracy, which are useful to feed the modelling strategy and predict CAI at a stand level. This method's success raises the possibility of integrating ecosystem modelling techniques and lidar data for the simulation of net forest carbon fluxes.  相似文献   

12.
Insect outbreaks are major forest disturbances, causing tree mortality across millions of ha in North America. Resultant spatial and temporal patterns of tree mortality can profoundly affect ecosystem structure and function. In this study, we evaluated the classification accuracy of multispectral imagery at different spatial resolutions. We used four-band digital aerial imagery (30-cm spatial resolution and aggregated to coarser resolutions) acquired over lodgepole pine-dominated stands in central Colorado recently attacked by mountain pine beetle. Classes of interest included green trees and multiple stages of post-insect attack tree mortality, including dead trees with red needles (“red-attack”), dead trees without needles (“gray-attack”), and non-forest. The 30-cm resolution image facilitated delineation of trees located in the field, which were used in image classification. We employed a maximum likelihood classifier using the green band, Red-Green Index (RGI), and Normalized Difference Vegetation Index (NDVI). Pixel-level classification accuracies using this imagery were good (overall accuracy of 87%, kappa = 0.84), although misclassification occurred between a) sunlit crowns of live (green) trees and herbaceous vegetation, and b) sunlit crowns of gray- and red-attack trees and bare soil. We explored the capability of coarser resolution imagery, aggregated from the 30-cm resolution to 1.2, 2.4, and 4.2 m, to improve classification accuracy. We found the highest accuracy at the 2.4-m resolution, where reduction in omission and commission errors and increases in overall accuracy (90%) and kappa (0.88) were achieved, and visual inspection indicated improved mapping. Pixels at this resolution included more shadow in forested regions than pixels in finer resolution imagery, thereby reducing forest canopy reflectance and allowing improved separation between forest and non-forest classes, yet were fine enough to resolve individual tree crowns better than the 4.2-m imagery. Our results illustrate that a classification of an image with a spatial resolution similar to the area of a tree crown outperforms that of finer and coarser resolution imagery for mapping tree mortality and non-forest classes. We also demonstrate that multispectral imagery can be used to separate multiple postoutbreak attack stages (i.e., red-attack and gray-attack) from other classes in the image.  相似文献   

13.
Estimates of mean tree size and cover for each forest stand from an invertible forest canopy reflectance model are part of a new forest vegetation mapping system. Image segmentation defines stands which are sorted into general growth forms using per-pixel image classifications. Ecological models based on terrain relations predict species associations for the conifer, hardwood, and brush growth forms. The combination of the model-based estimates of tree size and cover with species associations yields general-purpose vegetation maps useful for a variety of land management needs. Results of timber inventories in the Tahoe and Stanislaus National Forests indicate the vegetation maps form a useful basis for stratification. Patterns in timber volumes for the strata reveal that the cover estimates are more reliable than the tree size estimates. A map accuracy assessment of the Stanislaus National Forest shows high overall map accuracy and also illustrates the problems in estimating tree size.  相似文献   

14.
Various studies have been presented within the last 10 years on the possibilities for predicting forest variables such as stand volume and mean height by means of airborne laser scanning (ALS) data. These have usually considered tree stock as a whole, even though it is tree species-specific forest information that is of primary interest in Finland, for example. We will therefore concentrate here on prediction of the species-specific forest variables volume, stem number, basal area, basal area median diameter and tree height, applying the non-parametric k-MSN method to a combination of ALS data and aerial photographs in order to predict these stand attributes simultaneously for Scots pine, Norway spruce and deciduous trees as well as total characteristics as sums of the species-specific estimates. The predictor variables derived from the ALS data were based on the height distribution of vegetation hits, whereas spectral values and texture features were employed in the case of the aerial photographs. The data covered 463 sample plots in 67 stands in eastern Finland, and the results showed that this approach can be used to predict species-specific forest variables at least as accurately as from the current stand-level field inventory for Finland. The characteristics of Scots pine and Norway spruce were predicted more accurately than those of deciduous trees.  相似文献   

15.
A new approach for using canopy reflectance models (CRMs) is presented that requires no field data or knowledge about the study area or imagery. Multiple Forward-Mode Adaptive Full-Blind (MFM-AFB) modelling provides forest biophysical structural information (BSI), and can also be used for classification and spectral mixture analysis at sub-pixel scales without user-specified model inputs, training data or endmember spectra, as these are instead automatically derived. In an example application using 2007 Landsat imagery of forest damaged by a mountain pine beetle (MPB) epidemic in British Columbia, Canada, overall BSI accuracy was within ±1000 stems ha–1 for stand density, ±0.5 m for crown radius and ±1 m tree height for healthy and MPB stands. MFM-AFB software is suitable for regional, multi-temporal and unknown imagery and areas. By not requiring user-specified a priori model inputs to infer BSI, the MFM-AFB approach may help enable mainstream use of diverse and advanced CRMs for image analysis.  相似文献   

16.
In this study a GIS-based decision support system (DSS) was built for assessing the short- and long-term risk of wind damage in boreal forests. This was done by integrating a forest growth model SIMA and a mechanistic wind damage model HWIND into geographical information system software (ArcGIS 8.2) as a toolbar (DLL) using ArcObjects in ArcGIS and Visual Basic 6. In this DSS complex problems are solved within program so that forest gaps, edge stands and edges are automatically tracked when the forest structure changes over time as a result of forest growth dynamics and management. This DSS can be used to assess the risk of wind damage to Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and birch (Betula spp.) stands, regarding the number of stands and area at risk and length of vulnerable edges of these risk stands at certain critical wind speed classes (i.e. corresponding the maximum wind speed a tree/stand can resist). This DSS can helps forest managers to analyse and visualise (charts, maps) the possible effects of forest management, such as clear-cuts, on both the immediate and long-term risks of wind damage at both stand and regional level.  相似文献   

17.
Mountain pine beetle red attack damage has been successfully detected and mapped using single-date high spatial resolution (< 4 m) satellite multi-spectral data. Forest managers; however, need to monitor locations for changes in beetle populations over time. Specifically, counts of individual trees attacked in successive years provide an indication of beetle population growth and dynamics. Surveys are typically used to estimate the ratio of green (current) attack trees to red (previous) attack trees or G:R. In this study, we estimate average stand-level G:R using a time-series of QuickBird multi-spectral and panchromatic satellite data, combined with field data for three forested stands near Merritt, British Columbia, Canada. Using a ratio of QuickBird red to green wavelengths (Red-Green Index or RGI), the change in RGI (ΔRGI) in successive image pairs is used to estimate red attack damage in 2004, 2005, and 2006, with true positive accuracies ranging from 89 to 93%. To overcome issues associated with differing viewing geometry and illumination angles that impair tracking of individual trees through time, segments are generated from the QuickBird multi-spectral data to identify small groups of trees. These segments then serve as the vehicle for monitoring changes in red attack damage over time. A local maxima filter is applied to the panchromatic data to estimate stem counts, thereby allowing an indication of the total stand population at risk of attack. By combining the red attack damage estimates with the local maxima stem counts, predictions are made of the number of attacked trees in a given year. Backcasting the current year's red attack damaged trees as the previous year's green attack facilitates the estimation of an average stand G:R. In this study area, these retrospective G:R values closely match those generated from field surveys. The results of this study indicate that a monitoring program using a time series of high spatial resolution remotely sensed data (multi-spectral and panchromatic) over select sample locations, could be used to estimate G:R over large areas, facilitating landscape level management strategies and/or providing a mechanism for assessing the efficacy of previously implemented strategies.  相似文献   

18.
Predicting the probability of wind damage in both natural and managed forests is important for understanding forest ecosystem functioning, the environmental impact of storms and for forest risk management. We undertook a thorough validation of three versions of the hybrid-mechanistic wind risk model, ForestGALES, and a statistical logistic regression model, against observed damage in a Scottish upland conifer forest following a major storm. Statistical analysis demonstrated that increasing tree height and local wind speed during the storm were the main factors associated with increased damage levels. All models provided acceptable discrimination between damaged and undamaged forest stands but there were trade-offs between the accuracy of the mechanistic models and model bias. The two versions of the mechanistic model with the lowest bias gave very comparable overall results at the forest scale and could form part of a decision support system for managing forest wind damage risk.  相似文献   

19.
Abstract

Abstract. This paper reports the results of a study of the foliar reflectance properties of lodgepole pine trees under mountain pine beetle attack which aimed to determine the sequence of changes which occur. The motivation for this study was to identify spectral regions showing the earliest signs of attack in order to choose spectral bands for airborne linear array sensors. Normal illumination, diffuse hemispherical reflectance spectra were obtained of needles from trees showing varying degrees of stress from beetle attack and for needles from unattacked trees for comparison. The more pronounced changes in the spectra were interpreted visually and compared to changes reported by other authors. The more subtle changes were studied by analysing variance methods. Three spectral bands (the green peak, red edge and near-infrared (NIR) shoulder regions) have been identified as most promising for detecting early effects of bark beetle attack. Three additional bands (the blue, red and NIR plateau regions) are identified as reference bands for calibration and comparison purposes. The difference between foliar reflectance of attacked and unattacked trees is found to be most significant in the visible and red edge regions for current foliage and in the NIR for previous foliage. A red edge red shift was observed in the spectra of current foliage from attacked trees, in contrast to red edge blue shifts associated with stress in other studies. The observed sequence of subtle to more pronounced changes cannot be explained qualitatively using current knowledge of the plant pigment and anatomical changes which occur at the cellular and needle levels in stressed conifers. Further study of the detailed changes in pigments anel cellular and foliar anatomy is recommended, both to elucidate on the cause-and-effect relationships which occur, and to indicate the extent to which this paper's findings can be generalized. The findings suggest that multispectral linear array airborne scanners may be able to detect stressed conifers long before the red attack stage, but further investigation is required to determine whether the differences at foliar level between attacked and unattacked trees can also be detected at the whole-tree level, and whether confusion with other ground cover types can be avoided.  相似文献   

20.
Extensive outbreaks of tree-killing insects have been occurring in many parts of North America, including the province of British Columbia, raising concerns about the health of pine forest ecosystems. The dynamic phenomenon of mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, infestation outbreaks is an inherent spatial and temporal complex process. Agent-based modeling (ABM) facilitates simulating spatial interactions that describe the ecological context in which insect populations spread. The main objective of this study was to develop a model of the MPB forest infestation dynamics. This spatially explicit model integrates geographic information systems (GISs) and ABM to simulate MPB outbreaks at the tree and landscape scales, providing spatiotemporal information of annual distribution and patterns of MPB outbreaks. This prototype was implemented with geographic data generated from aerial overview surveys carried out by the B.C. Ministry of Forests and Range, for the study site in Kamloops, Canada. Results show the direct influence that vigorous forest stands and trees have on higher breeding rates, and therefore in the MPB population increment at a tree scale, in a period of 5 years. The simulation results at the landscape level help to determine the most probable locations of future MPB infestations in a time frame of 10 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号